Etäisyyksien tulo on 1

Yksikköympyrältä on valittu kolme pistettä A = (1, 0), B=(cos a, sin a) ja C = (cos a, -sin a). Tutkitaan funktiota f, joka lasketaan tason pisteelle Z laskemalla etäisyys jokaiseen pisteeseen A, B ja C ja ottamalla näistä tulo. Ts

f(Z) = |ZA| * |ZB| * |ZC|

Nyt tutkitaan tasa-arvo käyrää {f=1}. Tehtävä on ratkaista parametrin a arvo, jolla tasa-arvo käyrä sivuaa yksikköympyrää (oikeassa puolitasossa). Tässä kuva tilanteesta:
https://membolicsythodhome.files.wordpress.com/2020/05/distprod1.png?w=600

PS. tasa-arvo käyrä on aika mukavan näköinen lenkura (tai useampi osainen), kun parametri-pisteitä siirtelee (ja ottaa vielä jopa lisääkin!). Olisin tehnyt tietenkin Desmos-kuvaajiston, mutta Desmos ei näytä toimivan. Jotain "Failed to load resource: the server responded with a status of 404 (), fi is not an available language." se herjaa. Pitäiskö kokeilla vaihtaa selain enkuks...

6

139

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Jes, Desmoksen saa toimimaan, kun lisää ?lang=en osoitteen perään. Ihan sattumalta kokeilin toimisko noin, ni sehän toimi!

      https://www.desmos.com/calculator/6gkegn5ovb?lang=en

      Miten pitkälle pisteitä lisäilemällä pääsee, että ympyrä jää siltä matkalta joukon {f<1} sisään? Kokonaan se ei voi sitä syödä, sille asialle on olemassa hyvinkin elegantti todistus (vinkki: kompleksianalyysi).

    • Anonyymi

      f(Z;a)) = f(x,y;a) = 1 missä olen merkinnyt erikseen näkyviin parametrin a. Jokaisella a:n arvolla f on siis x:n ja y:n funktio. f = 1 on f:n tasa-arvokäyrä.

      f(x,y;a) = sqrt((x-1)^2 y^2)* sqrt((x-cos(a))^2 (y-sin(a))^2) * (sqrt((x-cos(a))^2 (y sin(a))^2)

      Olkoon g(x,y) = x^2 y^2 . g = 1 on g:n tasa-arvokäyrä.

      grad(f) on kohtisuorassa tuota f:n tasa-arvokäyrää vastaan ja grad(g) vastaavasti g:n tasa-arvokäyrää vastaan. Jos piste P on f:n ja g:n säännöllinen piste (grad = / 0) niin pisteessä P tapahtuvan sivuamisen ehto on, että grad(f) = k* grad(g) missä k on jokin reaaliluku =/ 0.
      Pisteet joissa jompi kumpi gradientti häviää pitää sitten vielä tarkastella.

      Olisihan tuossa laskemista ennenkuin a:n mahdolliset arvot selviävät! Enpä taida käyttää aamuani siihen.

      • Anonyymi

        Ja lisäksi tietysti täytyy olla f(P) = g(P).


      • Anonyymi
        Anonyymi kirjoitti:

        Ja lisäksi tietysti täytyy olla f(P) = g(P).

        Tarkennan vielä. f^( - 1) (1) =( (x,y) l f(x,y) = 1) ja vastaavasti g^( - 1) (1).Nämä ovat noiden fuktioiden tasa-arvokäyriä joiden tangenttien tulee olla yhdensuuntaisia eli normaaleiden pitää olla yhdensuuntaisia jossain pisteessä P joista seuraa tuo grad-ehto.Ja tietenkin noiden käyrien pitää leikata tuossa pisteessä P.

        Näin aamulla en näy heti pääsevän vauhtiin!


      • Kannattaa huomata, että {f^2 = 1} = {f=1}, niin neliöjuuret voi heittää pois.


    • Tässä olis miten minä sen laskin:
      https://membolicsythod.home.blog/2020/05/23/etaisyyksien-tulo-on-1/

      Useammalle pisteelle vastaavasti kohdat, joissa sivuaa saadaan Chebyshevin polynomien avulla:
      https://math.stackexchange.com/questions/3689253/n-insects-on-z-1-occupy-a-point-if-the-product-of-their-distances-to-it

      Kun n kasvaa, ympyrästä voidaan syödä mielivaltasen suuri osa ja hauskasti tasa-arvo käyrä |f|=1 muodostaa sisälle "pienemmän ympyrän". Ympyrän kehä ei voi kuitenkaan kokonaan jäädä |f|<1:n sisään, sillä ympyrällä on aina piste, jossa |f|>1. Jos tämä jäi jotakuta vaivaamaan, niin sehän tulee maksimi moduluksen periaatteesta: Funktio f on analyyttinen (sehän on polynomi) ja origossa |f| = 1. Koska f ei ole vakio, niin ympyrän reunalla täytyy olla piste jossa |f|>1.

      Maksimi moduluksen periaate: https://en.wikipedia.org/wiki/Maximum_modulus_principle

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Järkyttävä tieto Purrasta

      Purra tapasi nykyisen miehensä täällä. Suomi24:ssä! Tulipa likainen olo. Nyt loppuu tämä roikkuminen tällä palstalla.
      Maailman menoa
      227
      4841
    2. Näin asia on

      Tiedän ettei hän koskaan aio lähestyä minua eikä niin ole koskaan aikonutkaan, eikä lähesty ja enkä minä enää tee sitä k
      Ikävä
      23
      3550
    3. Mikseivät toimittajat vaadi Orpoa vastuuseen lupauksistaan

      Missä ne 100.000 uutta työpaikkaa muka ovat? Eivät yhtään missään. Näin sitä Suomessa voi puhua ja luvata mitä sattuu. E
      Maailman menoa
      269
      2053
    4. Taas varoitusta lumesta ja jäästä

      Ai kauhea! Vakava säävaroitus Lumi-/jäävaroitus Varsinais-Suomi, Satakunta, Uusimaa, Kanta-Häme, Päijät-Häme, Pirkanmaa,
      Maailman menoa
      10
      1956
    5. Aavistan tai oikeastaan

      tiedän, että olet hulluna minuun. Mutta ilman kommunikointia, tällaisenaan tilanne ja kaikki draama ovat mun näkökulmast
      Ikävä
      38
      1257
    6. Mistä erotat onko joku kiinnostunut vai muuten mukava?

      Voi sekaantua yleiseen ystävällisyyteen vai voiko?
      Suhteet
      161
      1219
    7. Poliisi tahtoo pääsyn 4 miljoonan suomalaisen sormenjälkiin.

      https://www.is.fi/digitoday/art-2000011009633.html Tämä sormenjälkiin poliisin pääsy on erittäin tärkeä rikollisten kiin
      Maailman menoa
      106
      1002
    8. Sulla on upeat pakarahalihakset

      todella hyvä muoto...
      Ikävä
      31
      813
    9. Uskotko että halaatko

      Kaivattuasi koskaan vai et?
      Ikävä
      61
      767
    10. Tiistaipäivää pakkastakin on

      Hyvää päivää huomentakin. Olin vähän kaupungilla käymässä 😊❤️🌞❄️☕
      Ikävä
      176
      750
    Aihe