Yksikköympyrältä on valittu kolme pistettä A = (1, 0), B=(cos a, sin a) ja C = (cos a, -sin a). Tutkitaan funktiota f, joka lasketaan tason pisteelle Z laskemalla etäisyys jokaiseen pisteeseen A, B ja C ja ottamalla näistä tulo. Ts
f(Z) = |ZA| * |ZB| * |ZC|
Nyt tutkitaan tasa-arvo käyrää {f=1}. Tehtävä on ratkaista parametrin a arvo, jolla tasa-arvo käyrä sivuaa yksikköympyrää (oikeassa puolitasossa). Tässä kuva tilanteesta:
https://membolicsythodhome.files.wordpress.com/2020/05/distprod1.png?w=600
PS. tasa-arvo käyrä on aika mukavan näköinen lenkura (tai useampi osainen), kun parametri-pisteitä siirtelee (ja ottaa vielä jopa lisääkin!). Olisin tehnyt tietenkin Desmos-kuvaajiston, mutta Desmos ei näytä toimivan. Jotain "Failed to load resource: the server responded with a status of 404 (), fi is not an available language." se herjaa. Pitäiskö kokeilla vaihtaa selain enkuks...
Etäisyyksien tulo on 1
6
264
Vastaukset
Jes, Desmoksen saa toimimaan, kun lisää ?lang=en osoitteen perään. Ihan sattumalta kokeilin toimisko noin, ni sehän toimi!
https://www.desmos.com/calculator/6gkegn5ovb?lang=en
Miten pitkälle pisteitä lisäilemällä pääsee, että ympyrä jää siltä matkalta joukon {f<1} sisään? Kokonaan se ei voi sitä syödä, sille asialle on olemassa hyvinkin elegantti todistus (vinkki: kompleksianalyysi).- Anonyymi
f(Z;a)) = f(x,y;a) = 1 missä olen merkinnyt erikseen näkyviin parametrin a. Jokaisella a:n arvolla f on siis x:n ja y:n funktio. f = 1 on f:n tasa-arvokäyrä.
f(x,y;a) = sqrt((x-1)^2 y^2)* sqrt((x-cos(a))^2 (y-sin(a))^2) * (sqrt((x-cos(a))^2 (y sin(a))^2)
Olkoon g(x,y) = x^2 y^2 . g = 1 on g:n tasa-arvokäyrä.
grad(f) on kohtisuorassa tuota f:n tasa-arvokäyrää vastaan ja grad(g) vastaavasti g:n tasa-arvokäyrää vastaan. Jos piste P on f:n ja g:n säännöllinen piste (grad = / 0) niin pisteessä P tapahtuvan sivuamisen ehto on, että grad(f) = k* grad(g) missä k on jokin reaaliluku =/ 0.
Pisteet joissa jompi kumpi gradientti häviää pitää sitten vielä tarkastella.
Olisihan tuossa laskemista ennenkuin a:n mahdolliset arvot selviävät! Enpä taida käyttää aamuani siihen.- Anonyymi
Ja lisäksi tietysti täytyy olla f(P) = g(P).
- Anonyymi
Anonyymi kirjoitti:
Ja lisäksi tietysti täytyy olla f(P) = g(P).
Tarkennan vielä. f^( - 1) (1) =( (x,y) l f(x,y) = 1) ja vastaavasti g^( - 1) (1).Nämä ovat noiden fuktioiden tasa-arvokäyriä joiden tangenttien tulee olla yhdensuuntaisia eli normaaleiden pitää olla yhdensuuntaisia jossain pisteessä P joista seuraa tuo grad-ehto.Ja tietenkin noiden käyrien pitää leikata tuossa pisteessä P.
Näin aamulla en näy heti pääsevän vauhtiin!
Tässä olis miten minä sen laskin:
https://membolicsythod.home.blog/2020/05/23/etaisyyksien-tulo-on-1/
Useammalle pisteelle vastaavasti kohdat, joissa sivuaa saadaan Chebyshevin polynomien avulla:
https://math.stackexchange.com/questions/3689253/n-insects-on-z-1-occupy-a-point-if-the-product-of-their-distances-to-it
Kun n kasvaa, ympyrästä voidaan syödä mielivaltasen suuri osa ja hauskasti tasa-arvo käyrä |f|=1 muodostaa sisälle "pienemmän ympyrän". Ympyrän kehä ei voi kuitenkaan kokonaan jäädä |f|<1:n sisään, sillä ympyrällä on aina piste, jossa |f|>1. Jos tämä jäi jotakuta vaivaamaan, niin sehän tulee maksimi moduluksen periaatteesta: Funktio f on analyyttinen (sehän on polynomi) ja origossa |f| = 1. Koska f ei ole vakio, niin ympyrän reunalla täytyy olla piste jossa |f|>1.
Maksimi moduluksen periaate: https://en.wikipedia.org/wiki/Maximum_modulus_principle
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
20v on otettu kiinni
Tulipalo oli sytytetty joten murhasiko ex omat lapsensa ja heidän Äidin. Tuskin sitä kukaan ohikulkijakaan sytytti.34311603Suomessa on ollut suurtyöttömyyttä ennenkin, ja lääkäriin pääsee nykyäänkin
Täällähän oli jonkun sekopään(vas.) juttu, että ennen ei ollut työttömyyttä ja lääkäriin pääsi. Siihen alkoi tietysti ko413517- 793067
IL - Auerin lapsia oli houkuteltu rahalla Annelin puolelle?
16:12 Outoja väitteitä Sijaisäidin mukaan Auerin lapsia koetettiin houkutella nettipalstoilla muuttamaan kertomuksiaan1082827- 922686
S-kaupoissa on nykyään ihanaa käydä
Kun niissä ei enää käy satuolentoihin uskovat hihhuIit eivätkä persut. Asiakaskunta on huomattavasti siistiytynyt muutam502495Savonlinan perhesurma, epäilty mies romani, äiti kantaväestöä
https://www.is.fi/kotimaa/art-2000011676508.html Savonlinnan seudun romaniyhdistyksestä kerrottiin lauantaina IS:lle, e1582429Savonlinnan murhapolttaja romani
Ainakin IS kertoo. Arvasin heti ettei ole normi valkolainen suomalainen.2752314- 451491
Kun aika on oikea niin
Tupsahdat uudelleen tai löydän edes melkein yhtä ihanan ja joudun tyytymään... Suukko poskelles. 😘 Viattomasti vain.. �141470
