Etäisyyksien tulo on 1

Yksikköympyrältä on valittu kolme pistettä A = (1, 0), B=(cos a, sin a) ja C = (cos a, -sin a). Tutkitaan funktiota f, joka lasketaan tason pisteelle Z laskemalla etäisyys jokaiseen pisteeseen A, B ja C ja ottamalla näistä tulo. Ts

f(Z) = |ZA| * |ZB| * |ZC|

Nyt tutkitaan tasa-arvo käyrää {f=1}. Tehtävä on ratkaista parametrin a arvo, jolla tasa-arvo käyrä sivuaa yksikköympyrää (oikeassa puolitasossa). Tässä kuva tilanteesta:
https://membolicsythodhome.files.wordpress.com/2020/05/distprod1.png?w=600

PS. tasa-arvo käyrä on aika mukavan näköinen lenkura (tai useampi osainen), kun parametri-pisteitä siirtelee (ja ottaa vielä jopa lisääkin!). Olisin tehnyt tietenkin Desmos-kuvaajiston, mutta Desmos ei näytä toimivan. Jotain "Failed to load resource: the server responded with a status of 404 (), fi is not an available language." se herjaa. Pitäiskö kokeilla vaihtaa selain enkuks...

6

131

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Jes, Desmoksen saa toimimaan, kun lisää ?lang=en osoitteen perään. Ihan sattumalta kokeilin toimisko noin, ni sehän toimi!

      https://www.desmos.com/calculator/6gkegn5ovb?lang=en

      Miten pitkälle pisteitä lisäilemällä pääsee, että ympyrä jää siltä matkalta joukon {f<1} sisään? Kokonaan se ei voi sitä syödä, sille asialle on olemassa hyvinkin elegantti todistus (vinkki: kompleksianalyysi).

    • Anonyymi

      f(Z;a)) = f(x,y;a) = 1 missä olen merkinnyt erikseen näkyviin parametrin a. Jokaisella a:n arvolla f on siis x:n ja y:n funktio. f = 1 on f:n tasa-arvokäyrä.

      f(x,y;a) = sqrt((x-1)^2 y^2)* sqrt((x-cos(a))^2 (y-sin(a))^2) * (sqrt((x-cos(a))^2 (y sin(a))^2)

      Olkoon g(x,y) = x^2 y^2 . g = 1 on g:n tasa-arvokäyrä.

      grad(f) on kohtisuorassa tuota f:n tasa-arvokäyrää vastaan ja grad(g) vastaavasti g:n tasa-arvokäyrää vastaan. Jos piste P on f:n ja g:n säännöllinen piste (grad = / 0) niin pisteessä P tapahtuvan sivuamisen ehto on, että grad(f) = k* grad(g) missä k on jokin reaaliluku =/ 0.
      Pisteet joissa jompi kumpi gradientti häviää pitää sitten vielä tarkastella.

      Olisihan tuossa laskemista ennenkuin a:n mahdolliset arvot selviävät! Enpä taida käyttää aamuani siihen.

      • Anonyymi

        Ja lisäksi tietysti täytyy olla f(P) = g(P).


      • Anonyymi
        Anonyymi kirjoitti:

        Ja lisäksi tietysti täytyy olla f(P) = g(P).

        Tarkennan vielä. f^( - 1) (1) =( (x,y) l f(x,y) = 1) ja vastaavasti g^( - 1) (1).Nämä ovat noiden fuktioiden tasa-arvokäyriä joiden tangenttien tulee olla yhdensuuntaisia eli normaaleiden pitää olla yhdensuuntaisia jossain pisteessä P joista seuraa tuo grad-ehto.Ja tietenkin noiden käyrien pitää leikata tuossa pisteessä P.

        Näin aamulla en näy heti pääsevän vauhtiin!


      • Kannattaa huomata, että {f^2 = 1} = {f=1}, niin neliöjuuret voi heittää pois.


    • Tässä olis miten minä sen laskin:
      https://membolicsythod.home.blog/2020/05/23/etaisyyksien-tulo-on-1/

      Useammalle pisteelle vastaavasti kohdat, joissa sivuaa saadaan Chebyshevin polynomien avulla:
      https://math.stackexchange.com/questions/3689253/n-insects-on-z-1-occupy-a-point-if-the-product-of-their-distances-to-it

      Kun n kasvaa, ympyrästä voidaan syödä mielivaltasen suuri osa ja hauskasti tasa-arvo käyrä |f|=1 muodostaa sisälle "pienemmän ympyrän". Ympyrän kehä ei voi kuitenkaan kokonaan jäädä |f|<1:n sisään, sillä ympyrällä on aina piste, jossa |f|>1. Jos tämä jäi jotakuta vaivaamaan, niin sehän tulee maksimi moduluksen periaatteesta: Funktio f on analyyttinen (sehän on polynomi) ja origossa |f| = 1. Koska f ei ole vakio, niin ympyrän reunalla täytyy olla piste jossa |f|>1.

      Maksimi moduluksen periaate: https://en.wikipedia.org/wiki/Maximum_modulus_principle

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Neljä nuorta kuoli Nurmijärvellä, auto suistui jokeen Onnettomuuden tutkinta on vielä alussa.

      Neljä nuorta kuoli Nurmijärvellä, auto suistui jokeen Onnettomuuden tutkinta on vielä alussa. Poliisi sai lauantaina 4.
      Maailman menoa
      323
      11519
    2. Ja taas kerran

      Mutka ja joki. Kenties liikaa nopeutta. Miksi?
      Nurmijärvi
      217
      4883
    3. Tänään olisn uskaltanut

      Ainakin luulen, kun tänään oli jotenkin varma olo. Olisin vähintään sanonut moi ja jos olisit ollut yksin olisin pyytäny
      Ikävä
      11
      2588
    4. Taitaa olla aika

      laittaa kirjaimet esille. Kuka kaipaa ja ketä.
      Ikävä
      162
      1924
    5. Kirjoita jotain kivaa

      ja positiivista ikäväsi kohteesta. 🫠
      Ikävä
      129
      1891
    6. Tiedäthän että

      Pohdin paljon siirtymistä. Tulen surulliseksi tietyistä tai monistakin asioista. Siksi parempi kun saat elää vapaasti il
      Ikävä
      13
      1378
    7. Tiistaina nähdään.

      Pitkästä aikaa. Minua on alkanut jännittää kovasti se näkeminen ja miten taas osaan olla. En tiedä yhtään oletko kiinnos
      Ikävä
      92
      1238
    8. Rattoisaa lauantai iltaa

      Mitäs tänään tapahtuu? Mitäs kirsikalle kuuluu? Onko lähdössä iltaelämään? 😊✨💞🌆 Minä vietä taas yksinäistä koti-iltaa
      Ikävä
      241
      1146
    9. Sinusta jäi lopulta kuitenkin hyvä kuva

      Vaikka voit ajatella itsestäsi kaikkea, mitä siinä mylläkässä saattoi tapahtua, mutta näin se on. Seurasin kyllä, ja mon
      Ikävä
      40
      1060
    10. Mikset ala

      Vapaan ihmisen kanssa joka tykkää sinusta?
      Ikävä
      85
      954
    Aihe