Yksikköympyrältä on valittu kolme pistettä A = (1, 0), B=(cos a, sin a) ja C = (cos a, -sin a). Tutkitaan funktiota f, joka lasketaan tason pisteelle Z laskemalla etäisyys jokaiseen pisteeseen A, B ja C ja ottamalla näistä tulo. Ts
f(Z) = |ZA| * |ZB| * |ZC|
Nyt tutkitaan tasa-arvo käyrää {f=1}. Tehtävä on ratkaista parametrin a arvo, jolla tasa-arvo käyrä sivuaa yksikköympyrää (oikeassa puolitasossa). Tässä kuva tilanteesta:
https://membolicsythodhome.files.wordpress.com/2020/05/distprod1.png?w=600
PS. tasa-arvo käyrä on aika mukavan näköinen lenkura (tai useampi osainen), kun parametri-pisteitä siirtelee (ja ottaa vielä jopa lisääkin!). Olisin tehnyt tietenkin Desmos-kuvaajiston, mutta Desmos ei näytä toimivan. Jotain "Failed to load resource: the server responded with a status of 404 (), fi is not an available language." se herjaa. Pitäiskö kokeilla vaihtaa selain enkuks...
Etäisyyksien tulo on 1
6
131
Vastaukset
Jes, Desmoksen saa toimimaan, kun lisää ?lang=en osoitteen perään. Ihan sattumalta kokeilin toimisko noin, ni sehän toimi!
https://www.desmos.com/calculator/6gkegn5ovb?lang=en
Miten pitkälle pisteitä lisäilemällä pääsee, että ympyrä jää siltä matkalta joukon {f<1} sisään? Kokonaan se ei voi sitä syödä, sille asialle on olemassa hyvinkin elegantti todistus (vinkki: kompleksianalyysi).- Anonyymi
f(Z;a)) = f(x,y;a) = 1 missä olen merkinnyt erikseen näkyviin parametrin a. Jokaisella a:n arvolla f on siis x:n ja y:n funktio. f = 1 on f:n tasa-arvokäyrä.
f(x,y;a) = sqrt((x-1)^2 y^2)* sqrt((x-cos(a))^2 (y-sin(a))^2) * (sqrt((x-cos(a))^2 (y sin(a))^2)
Olkoon g(x,y) = x^2 y^2 . g = 1 on g:n tasa-arvokäyrä.
grad(f) on kohtisuorassa tuota f:n tasa-arvokäyrää vastaan ja grad(g) vastaavasti g:n tasa-arvokäyrää vastaan. Jos piste P on f:n ja g:n säännöllinen piste (grad = / 0) niin pisteessä P tapahtuvan sivuamisen ehto on, että grad(f) = k* grad(g) missä k on jokin reaaliluku =/ 0.
Pisteet joissa jompi kumpi gradientti häviää pitää sitten vielä tarkastella.
Olisihan tuossa laskemista ennenkuin a:n mahdolliset arvot selviävät! Enpä taida käyttää aamuani siihen.- Anonyymi
Ja lisäksi tietysti täytyy olla f(P) = g(P).
- Anonyymi
Anonyymi kirjoitti:
Ja lisäksi tietysti täytyy olla f(P) = g(P).
Tarkennan vielä. f^( - 1) (1) =( (x,y) l f(x,y) = 1) ja vastaavasti g^( - 1) (1).Nämä ovat noiden fuktioiden tasa-arvokäyriä joiden tangenttien tulee olla yhdensuuntaisia eli normaaleiden pitää olla yhdensuuntaisia jossain pisteessä P joista seuraa tuo grad-ehto.Ja tietenkin noiden käyrien pitää leikata tuossa pisteessä P.
Näin aamulla en näy heti pääsevän vauhtiin!
Tässä olis miten minä sen laskin:
https://membolicsythod.home.blog/2020/05/23/etaisyyksien-tulo-on-1/
Useammalle pisteelle vastaavasti kohdat, joissa sivuaa saadaan Chebyshevin polynomien avulla:
https://math.stackexchange.com/questions/3689253/n-insects-on-z-1-occupy-a-point-if-the-product-of-their-distances-to-it
Kun n kasvaa, ympyrästä voidaan syödä mielivaltasen suuri osa ja hauskasti tasa-arvo käyrä |f|=1 muodostaa sisälle "pienemmän ympyrän". Ympyrän kehä ei voi kuitenkaan kokonaan jäädä |f|<1:n sisään, sillä ympyrällä on aina piste, jossa |f|>1. Jos tämä jäi jotakuta vaivaamaan, niin sehän tulee maksimi moduluksen periaatteesta: Funktio f on analyyttinen (sehän on polynomi) ja origossa |f| = 1. Koska f ei ole vakio, niin ympyrän reunalla täytyy olla piste jossa |f|>1.
Maksimi moduluksen periaate: https://en.wikipedia.org/wiki/Maximum_modulus_principle
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Neljä nuorta kuoli Nurmijärvellä, auto suistui jokeen Onnettomuuden tutkinta on vielä alussa.
Neljä nuorta kuoli Nurmijärvellä, auto suistui jokeen Onnettomuuden tutkinta on vielä alussa. Poliisi sai lauantaina 4.32311519- 2174883
Tänään olisn uskaltanut
Ainakin luulen, kun tänään oli jotenkin varma olo. Olisin vähintään sanonut moi ja jos olisit ollut yksin olisin pyytäny112588- 1621924
- 1291891
Tiedäthän että
Pohdin paljon siirtymistä. Tulen surulliseksi tietyistä tai monistakin asioista. Siksi parempi kun saat elää vapaasti il131378Tiistaina nähdään.
Pitkästä aikaa. Minua on alkanut jännittää kovasti se näkeminen ja miten taas osaan olla. En tiedä yhtään oletko kiinnos921238Rattoisaa lauantai iltaa
Mitäs tänään tapahtuu? Mitäs kirsikalle kuuluu? Onko lähdössä iltaelämään? 😊✨💞🌆 Minä vietä taas yksinäistä koti-iltaa2411146Sinusta jäi lopulta kuitenkin hyvä kuva
Vaikka voit ajatella itsestäsi kaikkea, mitä siinä mylläkässä saattoi tapahtua, mutta näin se on. Seurasin kyllä, ja mon401060- 85954