Polynomin kertoimien selvittäminen

Anonyymi

Olkoon meillä tuntematon funktio f, josta tiedetään vain että se on polynomi, jonka kaikki kertoimet ovat luonnollisia lukuja.
Siis f(x) = a0 a1*x a2*x^2 ... an*x^n.

Miten funktio f saadaan selvitettyä laskemalla sen arvo kahdessa pisteessä?

14

162

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Jos tiedetään, että polynomin kertoimet saadaan selville polynomin arvoista kahdessa pisteessä, niin silloin polynomi on muotoa a0 a1x.

      • Anonyymi

        Tuo on se intuitiivinen vastaus, mutta olet väärässä.

        Vinkki: Toisen pisteen valinta voi riippua siitä, mikä arvo ensimmäisenä valitussa pisteessä saatiin.


      • Anonyymi
        Anonyymi kirjoitti:

        Tuo on se intuitiivinen vastaus, mutta olet väärässä.

        Vinkki: Toisen pisteen valinta voi riippua siitä, mikä arvo ensimmäisenä valitussa pisteessä saatiin.

        Astetta n olevan polynomin määräämiseen tarvitaan aina n 1 pistettä, joten kaksi pistettä voi määrätä vain suoran a0 a1*x.


      • Anonyymi
        Anonyymi kirjoitti:

        Astetta n olevan polynomin määräämiseen tarvitaan aina n 1 pistettä, joten kaksi pistettä voi määrätä vain suoran a0 a1*x.

        Yleisessä tapauksessa kyllä, mutta tehtävän oletukset rajaavat mahdollisten polynomien joukkoa niin, että kahdella pisteellä voidaan määrätä yksikäsitteisesti minkä tahansa asteen polynomi.

        Mieti vaikka esimerkkitapausta, jossa f(1)=1 ja f(2)=4. Nuo ehdot toteuttaa täsmälleen yksi polynomi, jonka kertoimet ovat luonnollisia lukuja.


      • Anonyymi
        Anonyymi kirjoitti:

        Yleisessä tapauksessa kyllä, mutta tehtävän oletukset rajaavat mahdollisten polynomien joukkoa niin, että kahdella pisteellä voidaan määrätä yksikäsitteisesti minkä tahansa asteen polynomi.

        Mieti vaikka esimerkkitapausta, jossa f(1)=1 ja f(2)=4. Nuo ehdot toteuttaa täsmälleen yksi polynomi, jonka kertoimet ovat luonnollisia lukuja.

        Mieti vaikkapa esimerkkitapausta f(-1) = f(1) = 1. Nuo ehdot toteuttavat polynomit f = 1, x^2, x^4...


      • Anonyymi
        Anonyymi kirjoitti:

        Mieti vaikkapa esimerkkitapausta f(-1) = f(1) = 1. Nuo ehdot toteuttavat polynomit f = 1, x^2, x^4...

        Ei tietenkään mitkä tahansa kaksi pistettä kelpaa kaikille polynomeille, mutta jokaiselle polynomille on olemassa kaksi pistettä siten, että mikään toimen polynomi ei saa samoja arvoja molemmissa pisteissä.


    • Anonyymi

      Keksin ratkaisun, mutta en vielä spoilaa muilta.

      Kannattaa huomata, ettei matematiikassa yleensä anneta tarpeettomia oletuksia, joten alkuun pääsyä voi helpottaa kun miettii miksi on olennaista, että kertoimet ovat juuri luonnollisia lukuja.
      Jos polynomin kertoimet saisivat olla myös negatiivisia tai jos niiden ei tarvitsisi olla kokonaislukuja, niin tätä ei voisi ratkaista.

    • Anonyymi
    • Anonyymi

      Jos tiedetään, että polynomin kertoimet < 10^n, lasketaan f(10^n), ja tuloksesta voidaan lukea polynomin kertoimet.

      • Anonyymi

        Siis lasketaan ensin f(1) jolloin saadaan kertoimien summa S. Sitten valitaan n niin että 10^n > S. Sitten lasketaan f(10^n) jolloin polynomien kertoimet helposti nähdään.


      • Anonyymi
        Anonyymi kirjoitti:

        Siis lasketaan ensin f(1) jolloin saadaan kertoimien summa S. Sitten valitaan n niin että 10^n > S. Sitten lasketaan f(10^n) jolloin polynomien kertoimet helposti nähdään.

        Juuri näin!


    • Anonyymi

      P(x) = 1 20 x^2
      P(1) = 21 joten n = 2
      P(100) = 200001

      Q(x) = 1 2000 x
      Q(1) = 2001 joten n = 4
      Q(10000) = 20000001

      ???

      • Anonyymi

        Ei sitä n:ää päätellä ensimmäisestä pisteestä, vaan toisesta. Ensimmäinen kertoo vain, mitä toiseksi pisteeksi pitää valita.
        P(x) = 1 2000x.
        P(1) = 2001, joten toiseksi pisteeksi valitaan 10000.
        P(10000) = 20 000 001, jolloin tiedetään, että vakiotermi a0 = 1, x:n kerroin a1 = 2000, ja sitä suurempien x:n potenssien kertoimet ovat nollia.

        P(x) = 1 20*x^2
        P(1) = 21, joten valitaan toiseksi pisteeksi 100.
        P(100) = 200 001, joten tiedetään, että vakiotermi a0=1, x:n kerroin a1=0, x^2:n kerroin a2=20, ja sitä suurempien x:n potenssien kertoimet ovat nollia.

        Kun toiseksi pisteeksi valitaan tarpeeksi iso 10^k, polynomin kertoimet voidaan lukea kutakin potenssia vastaavasta kohdasta polynomin arvoa tuossa pisteessä.


      • Anonyymi

        Kun n = 2, se kertoo, että tuon P(100) numerot pitää ryhmitellä lopusta alkaen kahden välein kertoimien määrittämiseksi, eli 20 00 01, eri potenssien kertoimet ovat siis suurimmasta alkaen 20, 0 ja 1. Eli yleisesti ryhmittely tehdään n numeron sarjoihin.
        Fiksumpi olisi tuon itsekin huomannut.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      467
      4104
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      318
      1712
    3. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      117
      1547
    4. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      89
      1484
    5. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      99
      1418
    6. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      60
      1385
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      52
      1336
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      98
      1245
    9. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      45
      1109
    10. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      34
      1088
    Aihe