Laatikot kolmiossa (ja näköeste)

Anonyymi

Meillä on suorakulmainen kolmio, jonka molemmat kateetit ovat pituudeltaan 1. Sen sisällä on kaksi laatikkoa (eli suorakaidetta). Laatikot ovat toisiaan vasten ja kolmiota vasten (ekalla on kärki kolmion suorakulmaisessa kärjessä ja toisella sivu kolmion sivua vasten ja toinen sivu ensimmäisen laatikon sivua vasten, kummallakin on yksi kärki kolmion hypotenuusalla).
Katsokaa tarkemmin tästä havainne-appletista:

https://www.desmos.com/calculator/qlck2pmtyz

a) Mitkä ovat laatikoiden oikeiden alanurkkien x-koordinaatit (kuvassa pisteet A ja B), kun laatikoiden yhteinen ala on suurin mahdollinen?

b) Oletetaan että kolmio on asetettu x,y-koordinaatistoon kuten yllä linkitetyssä havainne-applikaatiossa eli se on akselien ja suoran x y=1 rajoittama. Nyt kolmioon lisätään päälle "näköeste" (kuvassa mustalla varjostettu alue). Olkoon g(x) = 1/2(1-x^2). Alue y<g(x) ei ole näkyvissä. Mitkä ovat nyt vastaavat sijainnit, jotta laatikoista näkyvä yhteinen ala maksimoituu?

4

93

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Taitaa tulla maksimi 1/3 x-koordinaateilla 1/3 ja 2/3.

      • Anonyymi

        Oikein.

        c) Yleistetään n:lle laatikolle: https://www.desmos.com/calculator/zrsmt8wisy

        d) Yleistetään kolmion hypotenuusa väheneväksi, välillä [0, 1] ei-negatiiviseksi funktioksi f. (Kolmio-tapauksessahan f(x) = 1-x). Ja n:lle laatikolle! Ei nyt oteta mitään näköesteitä, vaikka saahan siihenkin mielivaltaista funktiota pohtia :D


      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Esim. f(x) = 1-x^2

        https://www.desmos.com/calculator/jduucawg42

        Saatteko kukaan muu tuosta neljälle laatikolle tulosta A_max = 0.5671? Minä ratkaisin näin:

        https://www.desmos.com/calculator/zy5ewm7hqv

        Siis lisätään kaavan yksinkertaistamiseksi muuttuja x0, mutta kiinnitetään sen arvo x0=0. Voitaisiinhan siihen lisätä myös x_{N 1} = 1, tiedä sitten helpottaisiko laskuja. Mutta, kun

        g(x) = sum_{j=1}^N (x_j-x_{j-1})f(x_j)

        niin tällöin jokainen yhtälö yhtälöryhmässä grad(g) = 0 olisi muotoa (kun ensimmäinen ja viimeinen (jos otetaan myös x_{N 1} mukaan) unohdetaan, koska tämähän on Lagrangen kertoimet -juttu)

        3x_j^2 - 2x_{j-1}x_j = x_{j 1}^2

        ja 1-x1^2 = t (Lagrangen kerroin). Viimeisestä komponentista ei tule yhtälöä, koska x_{N 1} ei esiinny g:ssä eli toinen Lagrangen kerroin on nolla ja viimeinen ehto on niin sanotusti slacknessissä.

        Muuttujat voidaan tuosta ratkaista toistensa avulla ja siitä tulee sellainen ketjumurtoluvun tyyppinen, jossa on neliöjuuri aina päällä ja kaava 3 2/(sqrt(...)) toistuu. Mutta sitten itse viimeisen muuttujan ratkaiseminen viimeisestä yhtälöstä 3x_N - 2x_{N-1} = 1...
        Noh minä tein sen Sagella ja eliminaatioideaalilla ja sieltä tuli 16. asteen (tai 8. asteen kun korvaa x^2:n x:llä) polynomi, jonka juurista sitten piti valita oikea. Suurin juuri näytti tuottavan suurimman alan.

        Jos käyttääkin ord='invlex' polynomirenkaan määrittelyssä (ja sitten ottaa toiseksi viimeisen Gröbnerin kannasta, sillä siellähän on tietysti se x0 viimeisenä), niin saa polynomin, jonka juuri x1^2 on:

        x^8 - 697176/3666143*x^7 476813052/35499262669*x^6- 17218328/35499262669*x^5 8167986/816483041387*x^4 - 38968/319493364021*x^3 19052/22045042117449*x^2 - 8/2449449124161*x 1/198405379057041

        Eli ei sen helpompi, mutta saman x1 = sqrt(0.085566) = 0.2925 sieltä saa suurimpana juurena.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. 20v on otettu kiinni

      Tulipalo oli sytytetty joten murhasiko ex omat lapsensa ja heidän Äidin. Tuskin sitä kukaan ohikulkijakaan sytytti.
      Savonlinna
      248
      10817
    2. Mitä meidän välillä

      Tapahtuu lopulta?
      Ikävä
      76
      2991
    3. IL - Auerin lapsia oli houkuteltu rahalla Annelin puolelle?

      16:12 Outoja väitteitä Sijaisäidin mukaan Auerin lapsia koetettiin houkutella nettipalstoilla muuttamaan kertomuksiaan
      Maailman menoa
      82
      2668
    4. 88
      2530
    5. Savonlinan perhesurma, epäilty mies romani, äiti kantaväestöä

      https://www.is.fi/kotimaa/art-2000011676508.html Savonlinnan seudun romaniyhdistyksestä kerrottiin lauantaina IS:lle, e
      Maailman menoa
      151
      2242
    6. Savonlinnan murhapolttaja romani

      Ainakin IS kertoo. Arvasin heti ettei ole normi valkolainen suomalainen.
      Maailman menoa
      267
      2109
    7. Ei me taideta

      Pystyä kokonaan olemaan erossa.
      Ikävä
      45
      1461
    8. Kun aika on oikea niin

      Tupsahdat uudelleen tai löydän edes melkein yhtä ihanan ja joudun tyytymään... Suukko poskelles. 😘 Viattomasti vain.. �
      Ikävä
      13
      1425
    9. Muutama vuosi sitten oli pulaa hoitohenkilökunnasta

      Nyt heitä sanotaan irti. Tarve ei ole hävinnyt mihinkään, ei myöskään raha jolla ihmisten työnteosta maksettiin; raha va
      Maailman menoa
      132
      1321
    10. Ilouutinen: Osmo Peltola jo teini-iässä, silti yhdessä Peltsi-isän kanssa taas tv:ssä!

      Ihan paras parivaljakko: Peltsi-isä ja Osmo-poika. Tämä on kyllä sellaista hyvänmielen telkkariohjelmaa, josta kukaan ei
      Tv-sarjat
      35
      932
    Aihe