Viisikulmion verkko

Anonyymi

Mitenkäs jos säie-tehtävää yleistetään säännölliselle n-kulmiolle? Minä sain tämän näköistä 5-kulmiolle ja 6-kulmiolle:

https://www.desmos.com/calculator/jpvwuzzlb8
https://www.desmos.com/calculator/wvhv1acrjs

Parittomille n se näyttäisi yleistyvän niin, että että verkko ikään kuin kuroutuu reunoille ja sitten ympyrällä se on vain ympyrän kehä. Mutta mitekäs parillisilla? Samalla tavallahan siinä pitäisi käydä kun n kasvaa. Esim kasille tulee vielä yksi keskusjana. Riippuukos se siitä kuinka monta kertaa n on jaollinen kakkosella? Esim kympille pitää tehdä yhden kerran reunojen paritus, sitten vetää näistä jokaisesta yksi viiva ja yhdistää se kehä(?)

10

92

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ehkä pitäisi mennä myös alaspäin eli kolmiolle. Säännöllinen on vähän liian triviaali, niin otetaan mielivaltainen kolmio. Ajattelin, että sen ratkaisu on vaan joku joku kolmion lukuisista merkillisistä pisteistä. Mutta eihän se ihan niin triviaalia ole, vaan jos kolmion kulmat menevät liian epäsuuriksi, niin yhdyspiste on jokin kolmion kärjistä (se jossa on suurin kulma tietysti).

      https://www.desmos.com/calculator/ew3syxrr6q

      Menisikö se niin, että yleiselle pistejoukolle säikeet saadaan sen Voronoi diagrammista: https://en.wikipedia.org/wiki/Voronoi_diagram muodostetutun naapuruusverkon minimi virittäjäpuuna?

      • Anonyymi

        Tai siis yhdyspisteet ovat keskipisteitä Delaunay kolmioinnissa

        https://en.wikipedia.org/wiki/Delaunay_triangulation

        Mutta jotenkin pitäisi saada nuo "Relationship with the Voronoi diagram" kappaleen oikeanpuoleisen kuvan punaiset suorat osumaan niihin alkuperäisiin pisteisiin.


      • Anonyymi

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Mutta yhä siis ongelmana, että täytyy löytää ne yhdyspisteet, koska tässä pisteitä saa lisätä. Mutta ei, nyt löyty! Se on Steiner-puu: https://en.wikipedia.org/wiki/Steiner_tree_problem

        Äh, mun ratkaisu kuuskumiolle on väärin. Kun sitä viimeistä sivua ei tarvitse lisätä, niin sivut itsessään antaa paremman ratkaisun. Ilmankos se konfiguraatio ei hyvin asettunutkaan, vaikka lokaali optimi vissiin olikin.


    • Anonyymi
      • Anonyymi

        Keksin kaavan: https://www.desmos.com/calculator/5k2mflptmt
        Siellä on siniä ja kosinia eri kulmissa. Löytyy niille neliöjuurilausukkeita ja varmaan tuota voisi vielä sieventää, mutta samalla tavallahan sitä nekin laskimesta saa. Kaava tuli ihan perusgeometrialla. Yksi juttu, mitä en todistanut on, että jana C2A2 on pystysuora (yhdensuuntainen janan C0A1 kanssa).


      • Anonyymi
        Anonyymi kirjoitti:

        Keksin kaavan: https://www.desmos.com/calculator/5k2mflptmt
        Siellä on siniä ja kosinia eri kulmissa. Löytyy niille neliöjuurilausukkeita ja varmaan tuota voisi vielä sieventää, mutta samalla tavallahan sitä nekin laskimesta saa. Kaava tuli ihan perusgeometrialla. Yksi juttu, mitä en todistanut on, että jana C2A2 on pystysuora (yhdensuuntainen janan C0A1 kanssa).

        Saahan sitä vielä aika paljon sievennettyä käyttäen kaavoja pi/6:lle ja ilmeisen yhden sin(7pi/30)/sin(2pi/3):n kumoamisen olin unohtanut tehdä. Lisäksi sin(2pi/3) = sqrt(3)/2.

        https://www.desmos.com/calculator/ik20t2lylf

        Arvoitukseksi jää sin(7pi/30) ja sin(pi/10). Arvo sin(pi/5) sin(3pi/5):hän on tuolla tavoin asetetun säännöllisen viisikulmion ylimmän nurkan y-koordinaatti, joten ainakin sen etäisyys origosta (eli viisikulmion diagonaalisesta kärjestä) on phi. Näin ollen se on

        sqrt(phi^2 - 1/4) = 1/2 sqrt(5 2 sqrt(5))

        Päästään tähän: https://www.desmos.com/calculator/zgxrijvlfd


      • Anonyymi
        Anonyymi kirjoitti:

        Saahan sitä vielä aika paljon sievennettyä käyttäen kaavoja pi/6:lle ja ilmeisen yhden sin(7pi/30)/sin(2pi/3):n kumoamisen olin unohtanut tehdä. Lisäksi sin(2pi/3) = sqrt(3)/2.

        https://www.desmos.com/calculator/ik20t2lylf

        Arvoitukseksi jää sin(7pi/30) ja sin(pi/10). Arvo sin(pi/5) sin(3pi/5):hän on tuolla tavoin asetetun säännöllisen viisikulmion ylimmän nurkan y-koordinaatti, joten ainakin sen etäisyys origosta (eli viisikulmion diagonaalisesta kärjestä) on phi. Näin ollen se on

        sqrt(phi^2 - 1/4) = 1/2 sqrt(5 2 sqrt(5))

        Päästään tähän: https://www.desmos.com/calculator/zgxrijvlfd

        Käyttämällä sin(x) = cos(pi/2 - x) saadaan
        sin(7pi/30) = cos(4pi/15)
        Ja tähän summakaavalla, käyttäen 4/15 = 1/10 1/6 päästään kaavaan:

        https://www.desmos.com/calculator/ovpqwlak3w

        Tähän jää trigeistä ainoastaan cos(pi/10). Tällä sivulla https://mathworld.wolfram.com/TrigonometryAngles.html on sille kaava polynomin 16x^4 -20x^2 5 juurena eli

        cos(pi/10) = sqrt ((5 sqrt(5))/8)

        Näin saadaan koko kaavalle neliöjuurilauseke

        \frac{1}{2}\sqrt{5 2\sqrt{5}} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{4}\left(\sqrt{5}-1\right) \sqrt{\frac{5 \sqrt{5}}{8}}

        https://www.desmos.com/calculator/3da7hmng2d

        Sinnehän voi nyt ruveta sitä phiitä ymppäilemään (1 sqrt(5))/2 :na paikoilleen.


      • Anonyymi
        Anonyymi kirjoitti:

        Käyttämällä sin(x) = cos(pi/2 - x) saadaan
        sin(7pi/30) = cos(4pi/15)
        Ja tähän summakaavalla, käyttäen 4/15 = 1/10 1/6 päästään kaavaan:

        https://www.desmos.com/calculator/ovpqwlak3w

        Tähän jää trigeistä ainoastaan cos(pi/10). Tällä sivulla https://mathworld.wolfram.com/TrigonometryAngles.html on sille kaava polynomin 16x^4 -20x^2 5 juurena eli

        cos(pi/10) = sqrt ((5 sqrt(5))/8)

        Näin saadaan koko kaavalle neliöjuurilauseke

        \frac{1}{2}\sqrt{5 2\sqrt{5}} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{4}\left(\sqrt{5}-1\right) \sqrt{\frac{5 \sqrt{5}}{8}}

        https://www.desmos.com/calculator/3da7hmng2d

        Sinnehän voi nyt ruveta sitä phiitä ymppäilemään (1 sqrt(5))/2 :na paikoilleen.

        Aika sievään lopputulokseen päästään: https://www.desmos.com/calculator/vic4a99p3a

        Eli

        sqrt(3)/2 * phi 1/2 sqrt(4phi 3) 1/2 sqrt(phi 2)

        Toisessa ketjussa olleessa kaavassa
        L_5 = phi*sqrt(3)/2 1/2 (3phi-1)*sqrt(3-phi)
        pitäisikin siis olla (3phi-1)*sqrt(3-phi):n paikalla sqrt(4phi 3) sqrt(phi 2). Saisikohan tuosta otettua yhteisen neliöllisen tekijän käyttämällä phi^2 - phi - 1 = 0?


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      467
      4034
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      318
      1692
    3. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      116
      1526
    4. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      89
      1474
    5. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      99
      1408
    6. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      60
      1375
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      52
      1316
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      98
      1229
    9. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      44
      1079
    10. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      34
      1078
    Aihe