Viisikulmion verkko

Anonyymi

Mitenkäs jos säie-tehtävää yleistetään säännölliselle n-kulmiolle? Minä sain tämän näköistä 5-kulmiolle ja 6-kulmiolle:

https://www.desmos.com/calculator/jpvwuzzlb8
https://www.desmos.com/calculator/wvhv1acrjs

Parittomille n se näyttäisi yleistyvän niin, että että verkko ikään kuin kuroutuu reunoille ja sitten ympyrällä se on vain ympyrän kehä. Mutta mitekäs parillisilla? Samalla tavallahan siinä pitäisi käydä kun n kasvaa. Esim kasille tulee vielä yksi keskusjana. Riippuukos se siitä kuinka monta kertaa n on jaollinen kakkosella? Esim kympille pitää tehdä yhden kerran reunojen paritus, sitten vetää näistä jokaisesta yksi viiva ja yhdistää se kehä(?)

10

85

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ehkä pitäisi mennä myös alaspäin eli kolmiolle. Säännöllinen on vähän liian triviaali, niin otetaan mielivaltainen kolmio. Ajattelin, että sen ratkaisu on vaan joku joku kolmion lukuisista merkillisistä pisteistä. Mutta eihän se ihan niin triviaalia ole, vaan jos kolmion kulmat menevät liian epäsuuriksi, niin yhdyspiste on jokin kolmion kärjistä (se jossa on suurin kulma tietysti).

      https://www.desmos.com/calculator/ew3syxrr6q

      Menisikö se niin, että yleiselle pistejoukolle säikeet saadaan sen Voronoi diagrammista: https://en.wikipedia.org/wiki/Voronoi_diagram muodostetutun naapuruusverkon minimi virittäjäpuuna?

      • Anonyymi

        Tai siis yhdyspisteet ovat keskipisteitä Delaunay kolmioinnissa

        https://en.wikipedia.org/wiki/Delaunay_triangulation

        Mutta jotenkin pitäisi saada nuo "Relationship with the Voronoi diagram" kappaleen oikeanpuoleisen kuvan punaiset suorat osumaan niihin alkuperäisiin pisteisiin.


      • Anonyymi

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Mutta yhä siis ongelmana, että täytyy löytää ne yhdyspisteet, koska tässä pisteitä saa lisätä. Mutta ei, nyt löyty! Se on Steiner-puu: https://en.wikipedia.org/wiki/Steiner_tree_problem

        Äh, mun ratkaisu kuuskumiolle on väärin. Kun sitä viimeistä sivua ei tarvitse lisätä, niin sivut itsessään antaa paremman ratkaisun. Ilmankos se konfiguraatio ei hyvin asettunutkaan, vaikka lokaali optimi vissiin olikin.


    • Anonyymi
      • Anonyymi

        Keksin kaavan: https://www.desmos.com/calculator/5k2mflptmt
        Siellä on siniä ja kosinia eri kulmissa. Löytyy niille neliöjuurilausukkeita ja varmaan tuota voisi vielä sieventää, mutta samalla tavallahan sitä nekin laskimesta saa. Kaava tuli ihan perusgeometrialla. Yksi juttu, mitä en todistanut on, että jana C2A2 on pystysuora (yhdensuuntainen janan C0A1 kanssa).


      • Anonyymi
        Anonyymi kirjoitti:

        Keksin kaavan: https://www.desmos.com/calculator/5k2mflptmt
        Siellä on siniä ja kosinia eri kulmissa. Löytyy niille neliöjuurilausukkeita ja varmaan tuota voisi vielä sieventää, mutta samalla tavallahan sitä nekin laskimesta saa. Kaava tuli ihan perusgeometrialla. Yksi juttu, mitä en todistanut on, että jana C2A2 on pystysuora (yhdensuuntainen janan C0A1 kanssa).

        Saahan sitä vielä aika paljon sievennettyä käyttäen kaavoja pi/6:lle ja ilmeisen yhden sin(7pi/30)/sin(2pi/3):n kumoamisen olin unohtanut tehdä. Lisäksi sin(2pi/3) = sqrt(3)/2.

        https://www.desmos.com/calculator/ik20t2lylf

        Arvoitukseksi jää sin(7pi/30) ja sin(pi/10). Arvo sin(pi/5) sin(3pi/5):hän on tuolla tavoin asetetun säännöllisen viisikulmion ylimmän nurkan y-koordinaatti, joten ainakin sen etäisyys origosta (eli viisikulmion diagonaalisesta kärjestä) on phi. Näin ollen se on

        sqrt(phi^2 - 1/4) = 1/2 sqrt(5 2 sqrt(5))

        Päästään tähän: https://www.desmos.com/calculator/zgxrijvlfd


      • Anonyymi
        Anonyymi kirjoitti:

        Saahan sitä vielä aika paljon sievennettyä käyttäen kaavoja pi/6:lle ja ilmeisen yhden sin(7pi/30)/sin(2pi/3):n kumoamisen olin unohtanut tehdä. Lisäksi sin(2pi/3) = sqrt(3)/2.

        https://www.desmos.com/calculator/ik20t2lylf

        Arvoitukseksi jää sin(7pi/30) ja sin(pi/10). Arvo sin(pi/5) sin(3pi/5):hän on tuolla tavoin asetetun säännöllisen viisikulmion ylimmän nurkan y-koordinaatti, joten ainakin sen etäisyys origosta (eli viisikulmion diagonaalisesta kärjestä) on phi. Näin ollen se on

        sqrt(phi^2 - 1/4) = 1/2 sqrt(5 2 sqrt(5))

        Päästään tähän: https://www.desmos.com/calculator/zgxrijvlfd

        Käyttämällä sin(x) = cos(pi/2 - x) saadaan
        sin(7pi/30) = cos(4pi/15)
        Ja tähän summakaavalla, käyttäen 4/15 = 1/10 1/6 päästään kaavaan:

        https://www.desmos.com/calculator/ovpqwlak3w

        Tähän jää trigeistä ainoastaan cos(pi/10). Tällä sivulla https://mathworld.wolfram.com/TrigonometryAngles.html on sille kaava polynomin 16x^4 -20x^2 5 juurena eli

        cos(pi/10) = sqrt ((5 sqrt(5))/8)

        Näin saadaan koko kaavalle neliöjuurilauseke

        \frac{1}{2}\sqrt{5 2\sqrt{5}} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{4}\left(\sqrt{5}-1\right) \sqrt{\frac{5 \sqrt{5}}{8}}

        https://www.desmos.com/calculator/3da7hmng2d

        Sinnehän voi nyt ruveta sitä phiitä ymppäilemään (1 sqrt(5))/2 :na paikoilleen.


      • Anonyymi
        Anonyymi kirjoitti:

        Käyttämällä sin(x) = cos(pi/2 - x) saadaan
        sin(7pi/30) = cos(4pi/15)
        Ja tähän summakaavalla, käyttäen 4/15 = 1/10 1/6 päästään kaavaan:

        https://www.desmos.com/calculator/ovpqwlak3w

        Tähän jää trigeistä ainoastaan cos(pi/10). Tällä sivulla https://mathworld.wolfram.com/TrigonometryAngles.html on sille kaava polynomin 16x^4 -20x^2 5 juurena eli

        cos(pi/10) = sqrt ((5 sqrt(5))/8)

        Näin saadaan koko kaavalle neliöjuurilauseke

        \frac{1}{2}\sqrt{5 2\sqrt{5}} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{4}\left(\sqrt{5}-1\right) \sqrt{\frac{5 \sqrt{5}}{8}}

        https://www.desmos.com/calculator/3da7hmng2d

        Sinnehän voi nyt ruveta sitä phiitä ymppäilemään (1 sqrt(5))/2 :na paikoilleen.

        Aika sievään lopputulokseen päästään: https://www.desmos.com/calculator/vic4a99p3a

        Eli

        sqrt(3)/2 * phi 1/2 sqrt(4phi 3) 1/2 sqrt(phi 2)

        Toisessa ketjussa olleessa kaavassa
        L_5 = phi*sqrt(3)/2 1/2 (3phi-1)*sqrt(3-phi)
        pitäisikin siis olla (3phi-1)*sqrt(3-phi):n paikalla sqrt(4phi 3) sqrt(phi 2). Saisikohan tuosta otettua yhteisen neliöllisen tekijän käyttämällä phi^2 - phi - 1 = 0?


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ja taas ammuttu kokkolassa

      Kokkolaisilta pitäisi kerätä pois kaikki ampumaset, keittiöveitset ja kaikki mikä vähänkään paukku ja on terävä.
      Kokkola
      30
      3481
    2. Kukka ampu taas Kokkolassa?

      T. olisi hetkeä aiemmin lähtenyt johonkin. Naapuri kai tekijä J.K., ei paljasjalkainen Kokkolalainen, vaan n. 100km pääs
      Kokkola
      9
      1538
    3. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      113
      1473
    4. Milli-helenalla ongelmia

      Suomen virkavallan kanssa. Eipä ole ihme kun on etsintäkuullutettu jenkkilässäkin. Vähiin käy oleskelupaikat virottarell
      Kotimaiset julkkisjuorut
      224
      1255
    5. Kun näen sinut

      tulen iloiseksi. Tuskin uskallan katsoa sinua, herätät minussa niin paljon tunteita. En tunne sinua hyvin, mutta jotain
      Ikävä
      34
      893
    6. Purra saksii taas. Hän on mielipuuhassaan.

      Nyt hän leikkaa hyvinvointialueiltamme kymmeniä miljoonia. Sotea romutetaan tylysti. Terveydenhoitoamme kurjistetaan. ht
      Maailman menoa
      242
      883
    7. Yhdelle miehelle

      Mä kaipaan sua niin paljon. Miksi sä oot tommonen pösilö?
      Ikävä
      60
      869
    8. Helena Koivu on äiti

      Mitä hyötyä on Mikko Koivulla kohdella LASTENSA äitiä huonosti . Vie lapset tutuista ympyröistä pois . Lasten kodista.
      Kotimaiset julkkisjuorut
      130
      858
    9. Ja taas kerran hallinto-oikeus että pieleen meni

      Hallinto-oikeus kumosi kunnanhallituksen päätöksen vuokratalojen pääomituksesta. https://sysmad10.oncloudos.com/cgi/DREQ
      Sysmä
      66
      844
    10. Löydänköhän koskaan

      Sunlaista herkkää tunteellista joka jumaloi mua. Tuskin. Siksi harmittaa että asiat meni näin 🥲
      Ikävä
      97
      808
    Aihe