Laske syntyneen pallokolmion kulmat

Anonyymi

"Karttapallolla, jonka säde on 30.0cm, yhdistettiin kolme pistettä isoympyränkaarilla. Kaarien pituudet olivat: 35.0cm, 69,0cm ja 75.0cm. Laske syntyneen pallokolmion kulmat"
Olen muuttanut nuo kaarien pituudet asteiksi seuraavalla kaavalla; a= (s x 360) / (2Pii x R)
Sain seuraavat tulokset:
64.8450...
131.780...
143.23...
Miten tästä eteenpäin?

4

122

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi
    • Anonyymi

      Minä laskisin kosinilauseella vastaavien jänteiden pituudet ja yhdistäisin ne kolmioksi, josta taas kosinilauseella ensin yksi kulma, ja sinilauseella toiset. En tosin tiedä mitä kulmia tässä haetaan...

      • Anonyymi

        Haetaan pallokolmion kulmia? Mikä on epäselvää?


    • Anonyymi

      (A,B) = vektorien A ja B sisätulo, "pistetulo".
      A x B = vektorien A ja B vektoritulo, "ristitulo".
      On annettu kulmat
      a1= 35,0/30 = 1,16667 = 66,84508 astetta
      a2 = 69,0/30,0 = 2,3 = 131,78029 astetta
      a3= 75,0/ 30,0 =2,5 = 143,23945 astetta
      Nyt voidaan tarkastella 1-säteistä palloa, kuviot ja kulmat ovat siellä samat kuin tuolla annetulla pallolla.

      Meillä on pisteet joiden paikkavektorit (origo on keskipisteessä) ovat R1,R2 ja R3.

      R1 ja R2 määräävät tasos T1, R2 ja R3 määräävät tason T2 ja R3 ja R1 määräävät tason T3. Kysytyt kulmat ovat näiden tasojen välisiä kulmia. Ja kahden tason välinen kulma = pii - tasojen normaalien välinen kulma.Olkoot tasojen väliset kulmat A1 (T1- ja T2- tasot), A2 (T2-T3) ja A3 (T3-T1)

      Tasojen ykkösnormaalit ovat.
      T1: (R1 x R2) / sin(a1)
      T2: ( R2 x R3) / sin(a2)
      T3: (R3 x R1) / sin(a3)

      (1) ((R1 x R2), (R2 x R3)) = sin(a1) sin(a2) cos(pii - A1)
      (2) ((R2 x R3), (R3 x R1)) = sin(a2) sin(a3) cos(pii - A2)
      (3) ((R3 x R1) , (R1 x R2)) =sin(a3) sin(a1) cos(pii - A3)

      Vektorialgebrassa tuollainen neljän vektorin A;B;C;D tulo määritellään näin:
      ((A x B) , (C x D)) = (A,C) (B.D) - (A,D) (B,C)
      Näin ollenyllä olevien yhtälöide 1 - 3 vasemmat puolet ovat.

      (1') cos(a1) cos(a2)- cos(a3)
      (2') cos(a2) cos(a3) - cos(a1)
      (3') cos(a3) cos(a1) - cos(a2)

      Nyt a1,a2 ja a3 tunnetaan joten voit ratkaista kulmaien A1,A2 ja A3 arvot..

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Takaisin ylös

    Luetuimmat keskustelut

    1. 20v on otettu kiinni

      Tulipalo oli sytytetty joten murhasiko ex omat lapsensa ja heidän Äidin. Tuskin sitä kukaan ohikulkijakaan sytytti.
      Savonlinna
      319
      12375
    2. Suomessa on ollut suurtyöttömyyttä ennenkin, ja lääkäriin pääsee nykyäänkin

      Täällähän oli jonkun sekopään(vas.) juttu, että ennen ei ollut työttömyyttä ja lääkäriin pääsi. Siihen alkoi tietysti ko
      Maailman menoa
      49
      3601
    3. Mitä meidän välillä

      Tapahtuu lopulta?
      Ikävä
      84
      3202
    4. IL - Auerin lapsia oli houkuteltu rahalla Annelin puolelle?

      16:12 Outoja väitteitä Sijaisäidin mukaan Auerin lapsia koetettiin houkutella nettipalstoilla muuttamaan kertomuksiaan
      Maailman menoa
      129
      2976
    5. 103
      2918
    6. S-kaupoissa on nykyään ihanaa käydä

      Kun niissä ei enää käy satuolentoihin uskovat hihhuIit eivätkä persut. Asiakaskunta on huomattavasti siistiytynyt muutam
      Maailman menoa
      67
      2660
    7. Savonlinan perhesurma, epäilty mies romani, äiti kantaväestöä

      https://www.is.fi/kotimaa/art-2000011676508.html Savonlinnan seudun romaniyhdistyksestä kerrottiin lauantaina IS:lle, e
      Maailman menoa
      158
      2578
    8. Savonlinnan murhapolttaja romani

      Ainakin IS kertoo. Arvasin heti ettei ole normi valkolainen suomalainen.
      Maailman menoa
      274
      2481
    9. Riikka runnoo! Uutta velkaa tänä vuonna 17 mrd. euroa

      Tirsk. Nyt kyllä hihityttää kuin pientä eläintä. Riikka takoo maailmanennätyksiä tasaiseen tahtiin. " [Riikka] joutuu
      Maailman menoa
      2
      1527
    10. Kun aika on oikea niin

      Tupsahdat uudelleen tai löydän edes melkein yhtä ihanan ja joudun tyytymään... Suukko poskelles. 😘 Viattomasti vain.. �
      Ikävä
      15
      1518
    Aihe