Auttakaa matikan tehtävässä!

Anonyymi

Miten tämmöinen pitäisi tehdä

Pitää osoittaa, että yhtälö 2x/(x^2 2) ≤1 on aina tosi

???????

7

141

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Kun x on negatiivinen, tuo lauseke on negatiivinen, eli väite pätee. Nolla on pienempi kuin yksi, joten väite pätee sielläkin. Kiinnostava osa tehtävää on siis positiiviset x:t.

      Jos derivointi on jo opetettu, niin derivoi ja totea, että derivaatan ainoassa nollakohdassa funktion arvo on korkeintaan yksi ja molemmilla puolilla arvo pienenee, joten väite pätee kaikkialla.

      Jos derivointia ei ole opetettu, et ole oppinut tai et halua derivoida, niin kerro epäyhtälö puolittain x^2 2:lla (positiivinen, joten ei ongelmaa), siirtele termejä, ratkaise toisen asteen yhtälö ja totea, että väite pitää paikkansa.

    • Anonyymi

      Toinen tapa:

      Kerro (x^2 2) toiselle puolelle (se on aina positiivista joten epäyhtälö ei tästä kärsi)

      2x ≤ x^2 2

      Vähennetään 2x molemmilta puolilta ja huomataan, että oikealla puolella on 1 enemmän kuin (x-1):n neliö, mikä tietenkin aina on epänegatiivista (jopa positiivista).

      0 ≤ x^2 - 2x 2
      0 ≤ x^2 - 2x 1 1
      0 ≤ (x-1)^2 1

      • Anonyymi

        Tämä neliöksi täydentäminen oli kieltämättä fiksumpi ratkaisu kuin kumpikaan omistani. Olen selvästi ruosteessa.


    • Anonyymi

      Kolmas tapa:

      Huomaa, että x^2 > x, kun x>2 (sillä x^2 = x*x > 2x, kun x>2). Nimittäjässä on siis jotain suurempaa kuin 2x, joten osamäärä on korkeintaan 1. Tämä siis silloin kun x>2. Toisaalta, jos 1<x<=2, niin nimittäjässä on x^2 2 > 2x. Ja jos taas x<1, niin kakkonen jo itsessään on suurempi kuin nimittäjä 2x.

      • Anonyymi

        Huomaa, että x^2 > 2x, kun x>2... piti sanomani.


    • Anonyymi

      Koska aina on x^2 2 > 0 niin epäyhtälö on yhtäpitävä epäyhtälön 2x < = x^2 2 kanssa.

      x^2 - 2x 2 = (x-1)^2 1 >= 1 > 0. mot.

    • Anonyymi

      Tässä olisi vielä yksi tapa (rajoitutaan positiivisiin x:n arvoihin):

      Osoitetaan että käänteisluvut ovat päinvastaisessa järjestyksessä.

      (x^2 2) / (2x)
      = (x 2/x) / 2
      Koska aritmeettinen keskiarvo on suurempaa kuin geometrinen, niin (jatketaan ey-ketjua)
      >= sqrt(x*2/x)
      = sqrt(2)
      > 1

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Hyvää syntymäpäivää Sanna 40 vee!!!!

      ᕼᗩᑭᑭY ᗷIᖇTᕼᗞᗩY Sister ❣️🥰 🎉🎂✨🍰🥳 🥳🎂🥂 🎉🎊🎁🎈🎂
      Maailman menoa
      58
      5060
    2. Suomen kaksikielisyys - täyttä huuhaata

      Eivätkö muuten yksilöt pysty arvioimaan mitä kieliä he tarvitsevat? Ulkomaalaiselle osaajalle riittää Suomessa kielitai
      Maailman menoa
      54
      4562
    3. Työeläkeloisinta 27,5 mrd. per vuosi

      Tuo kaikki on pois palkansaajien ostovoimasta. Ja sitten puupäät ihmettelee miksei Suomen talous kasva. No eihän se kas
      Maailman menoa
      122
      4489
    4. Mikä on vaikeinta siinä, että menetti yhteyden kaivattuun, jota vielä ajattelee?

      Mikä jäi kaihertamaan? Jos jokin olisi voinut mennä toisin, mitä se olisi ollut? Mitä olisit toivonut vielä ehtiväsi san
      Ikävä
      294
      1657
    5. 81
      1311
    6. Sulla on mies

      Aivan liikaa naisia.
      Ikävä
      228
      1308
    7. Kerro kaivattusi etunimi

      Miehille..
      Ikävä
      68
      1265
    8. 305
      998
    9. Kadutko mitään?

      Minä kadun ikävässä kirjoittamista, mutta en saa sitä tekemättömäksi.
      Sinkut
      199
      930
    10. Pääsit koskettamaan

      Sellaista osaa minussa jota kukaan ei ole ennen koskettanut. Siksi on hyvin vaikea unohtaa sinut kokonaan.
      Ikävä
      50
      820
    Aihe