Auttakaa matikan tehtävässä!

Anonyymi

Miten tämmöinen pitäisi tehdä

Pitää osoittaa, että yhtälö 2x/(x^2 2) ≤1 on aina tosi

???????

7

124

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Kun x on negatiivinen, tuo lauseke on negatiivinen, eli väite pätee. Nolla on pienempi kuin yksi, joten väite pätee sielläkin. Kiinnostava osa tehtävää on siis positiiviset x:t.

      Jos derivointi on jo opetettu, niin derivoi ja totea, että derivaatan ainoassa nollakohdassa funktion arvo on korkeintaan yksi ja molemmilla puolilla arvo pienenee, joten väite pätee kaikkialla.

      Jos derivointia ei ole opetettu, et ole oppinut tai et halua derivoida, niin kerro epäyhtälö puolittain x^2 2:lla (positiivinen, joten ei ongelmaa), siirtele termejä, ratkaise toisen asteen yhtälö ja totea, että väite pitää paikkansa.

    • Anonyymi

      Toinen tapa:

      Kerro (x^2 2) toiselle puolelle (se on aina positiivista joten epäyhtälö ei tästä kärsi)

      2x ≤ x^2 2

      Vähennetään 2x molemmilta puolilta ja huomataan, että oikealla puolella on 1 enemmän kuin (x-1):n neliö, mikä tietenkin aina on epänegatiivista (jopa positiivista).

      0 ≤ x^2 - 2x 2
      0 ≤ x^2 - 2x 1 1
      0 ≤ (x-1)^2 1

      • Anonyymi

        Tämä neliöksi täydentäminen oli kieltämättä fiksumpi ratkaisu kuin kumpikaan omistani. Olen selvästi ruosteessa.


    • Anonyymi

      Kolmas tapa:

      Huomaa, että x^2 > x, kun x>2 (sillä x^2 = x*x > 2x, kun x>2). Nimittäjässä on siis jotain suurempaa kuin 2x, joten osamäärä on korkeintaan 1. Tämä siis silloin kun x>2. Toisaalta, jos 1<x<=2, niin nimittäjässä on x^2 2 > 2x. Ja jos taas x<1, niin kakkonen jo itsessään on suurempi kuin nimittäjä 2x.

      • Anonyymi

        Huomaa, että x^2 > 2x, kun x>2... piti sanomani.


    • Anonyymi

      Koska aina on x^2 2 > 0 niin epäyhtälö on yhtäpitävä epäyhtälön 2x < = x^2 2 kanssa.

      x^2 - 2x 2 = (x-1)^2 1 >= 1 > 0. mot.

    • Anonyymi

      Tässä olisi vielä yksi tapa (rajoitutaan positiivisiin x:n arvoihin):

      Osoitetaan että käänteisluvut ovat päinvastaisessa järjestyksessä.

      (x^2 2) / (2x)
      = (x 2/x) / 2
      Koska aritmeettinen keskiarvo on suurempaa kuin geometrinen, niin (jatketaan ey-ketjua)
      >= sqrt(x*2/x)
      = sqrt(2)
      > 1

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      467
      4034
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      318
      1692
    3. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      116
      1526
    4. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      89
      1474
    5. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      99
      1408
    6. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      60
      1375
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      52
      1316
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      98
      1229
    9. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      44
      1079
    10. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      34
      1078
    Aihe