1 2 3 5 8...
Millä kaavalla tuo lasketaan?
Peräkkäisten lukujen summa?
13
2111
Vastaukset
- Anonyymi
an = an-1 an-2
- Anonyymi
Googlaa Fibonacci.
- Anonyymi
Yritä kysyä asiallisesti. Kerro mitä haluat laskea. Jotain olet tekemässä.
Summa on tietysti ääretön. Ääretön määrä toinen toistaan suurempia lukuja. Ja ne suurimmat ovat kaikki yksinäänkin äärettömiä. - Anonyymi
Jos luvut ovat f(1), f(2), f(3)...f(n) ja vastaavat summat ovat S(1), S(2), S(3)....S(n), niin silloin
Sn = f(n 2) - 1
Esim 1 1 2 3 5 8 = 20, ja sarjan seuraavat luvut ovat 13, 21, 35...- Anonyymi
Siis 13, 21, 34
- Anonyymi
Käytä Binet'n kaavaa Fibonacci luvulle, jolloin saat kaksi geometrista summaa.
- Anonyymi
Lisätäänpä lukujesi alkuun luku 1 niin saadaan Fibonaccin luvut
1,1,2,3,5,8,...
eli F(1) = 1, F(2) = 1, F(3) = 2,F(4) = 3,....,F(n) = F(n-1) F(n-2),...
F(1) F(2) F(3) ... F(n) = F(n 2) - 1
Kysymäsi summan laskemiseksi sinun on laskettava termin F(n 2) arvo. - Anonyymi
1 2 3 ..... 34 35 36=666!
Mutta miten saan (kaava?) laskettua yhteen luvut 1:stä 360:een?- Anonyymi
1 2 3 ... n = n*(n-1)/2
- Anonyymi
Anonyymi kirjoitti:
1 2 3 ... n = n*(n-1)/2
Miinusmerkin tilalle plus: n*(n 1)/2.
- Anonyymi
Anonyymi kirjoitti:
Miinusmerkin tilalle plus: n*(n 1)/2.
Kyllä. Ajatuskatko.
- Anonyymi
Summa S(n) = 1 2 3 5 8 ... n on helppo laskea. Ensin todetaan, että jonolle S(n) pätee rekursioyhtälö S(n) = S(n-1) S(n-1) - S(n-2) S(n-2) - S(n-3) = 2S(n-1) - S(n-3). Tämä on helppo havaita, sillä jotta päästään osasummasta S(n-1) summaan S(n), on lisättävä summaan S(n-1) kaksi viimeisimpinä summattua lukua. Nämä voidaan ilmoittaa osasummien erotuksina S(n-1) - S(n-2) ja S(n-2) - S(n-3).
Rekursioyhtälön S(n) = 2S(n-1) - S(n-3) toteuttaa muotoa x^n olevat eksponenttifunktiot, kun x toteuttaa yhtälön x^n = 2x^(n-1) - x^(n-3) tai sievennettynä unohtaen triviaaliratkaisu x = 0 on luvun x toteutettava x^3 - 2x^2 1 = 0. Yhtälö toteutuu, kun x = (1-sqrt(5))/2, x = (1 sqrt(5))/2 tai x = 1.
On siis löydetty kolme eksponenttifunktiota, jotka toteuttaa rekursioyhtälön. Luonnollisesti myös näiden lineaarikombinaatiot toteuttavat yhtälön. Kun lineaarikombinaation kertoimet valitaan siten, että S(1) = 1, s(2) = 3 ja S(3) = 6, rekursioyhtälön toteutuminen takaa, että johdettu kaava pätee millä tahansa arvolla n. Siksipä on ratkaistava yhtälöryhmä
a(1-sqrt(5))/2 b(1 sqrt(5))/2 c = 1
a((1-sqrt(5))/2)^2 b((1 sqrt(5))/2)^2 c = 3
a((1-sqrt(5))/2)^3 b((1 sqrt(5))/2)^3 c = 6.
Yhtälöryhmän ratkaisuna saadaan analyyttinen ratkaisu
S(n) = (1-2/sqrt(5))*((1 - sqrt(5))/2)^n (1 2/sqrt(5))*((1 sqrt(5))/2)^n - 2. Ratkaisun oikeellisuudesta on helppo varmistua kopioimalla lauseke ja sijoittamalla siihen eri n:n arvoja.- Anonyymi
Johan oli varsinainen hölötys aivan yksinkertaisesta asiasta!
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 1723580
Tekisi niin mieli laittaa sulle viestiä
En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m851598Miksi ihmeessä?
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek261317- 1581242
Pitääkö penkeillä hypätä Martina?
Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit1941023Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut16993- 35981
Kuinka kauan
Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?69903Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä
Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk95839- 62765