fillarin vanne laatikossa

Anonyymi

Kuinka suuri ympyrä (säde r) mahtuu suorankulmaisen laatikon s x s x k sisään (s=sivu ja k=korkeus).
Vaikeuskerroin ehkä kasvaa jos otettaisiin huomioon vanteen leveys eli lieriön korkeus.

Tuossa ensimmäinen ongelma tuntuu olevan kuvion hahmottaminen.
s=k eli kuution tapauksessa taitaa olla kuusikulmio ja vastaus jostain kaavasta ½*sqrt(3/2).

9

202

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      n-ulotteinen pallo m-ulotteisesssa kuutiossa, maksimi säde r = 1/2 * √(m/n)

      • Anonyymi

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Tuolla on yritetty laskeskella kuution sisällä
        https://math.stackexchange.com/questions/2570334/biggest-circle-you-can-fit-in-a-hypercube
        tuolla oleva linkki
        http://home.lu.lv/~sd20008/papers/essays/Hypercube [paper].pdf

        Miten tuollaisen hyperkuution voi kuvitella vai tarvitseeko edes että pystyy laskemaan.

        Alkuperäisessä kysymyksessä on siis aivan tavallinen 3D laatikko

        Ei noita yli 3-ulotteisia kappaleita käytännössä pysty kuvittelemaan silmiensä eteen samalla tavalla kuin 0-, 1-, 2- tai 3-ulotteisiakappaleita, mutta kyllä niitä silti on mahdollista hahmotella mielessään.

        Äärellisulotteiset avaruudet ja kappaleet toimivat kuitenkin jossain määrin samantapaisesti riippumatta siitä, onko ulottuvuuksia 2, 5 vai 185 006. Siinä kohtaa kun ulottuvuuksia onkin äärettömästi, joutuu nyrjäyttämään aivonsa aika abstraktiin näkökulmaan että asioihin saa jotain tolkkua.


    • Anonyymi

      Jos k >= s sqrt(2) niin mahtuu ympyrä jonka säde on s/sqrt(2).

    • Anonyymi

      Jos kuution sivun pituus on 1, kuinka suuri ympyrä (vanne) mahtuu kuution sisälle?

      Kun tämän hahmottaa, voi yrittää muita tapauksia. Leikatkaa jostakin purkista kuution muotoinen astia ja yrittäkää sijoittaa sinne pyöreä pahvikiekko, jonka halkaisija on suuurempi kuin kuution sivun pituus. Muodostuu suorakulmaisia kolmioita.

      • Anonyymi

        Halkaisija on sqrt(3/2) = 1,2247


      • Anonyymi

        Tuota suurin ympyrä kuutiossa voi hahmottaa siten, että ensin ajattelee kuviota, joka syntyy, kun taso leikkaa kuutiota niin, että se kulkee kahden vastakkaisen kärjen kautta ja kahden niiden siuvulla olevan särmän keskipisteiden kautta. Tämä kuvio on vinoneliö, jonka halkaisijat ovat sqrt3 ja sqrt2. Kun tuo taso lähtee sitten kääntymään sivusärmien keskipisteiden kautta kulkevan janan kautta, syntyy 6-kulmio. Suurin ympyrä sen sisälle tulee kun kuvio on säännöllinen, halkaisija on silloin tuo sqrt(3/2). Tuon todistaminen suurimmaksi mahdolliseksi on oma ongelmansa.


      • Anonyymi
        Anonyymi kirjoitti:

        Tuota suurin ympyrä kuutiossa voi hahmottaa siten, että ensin ajattelee kuviota, joka syntyy, kun taso leikkaa kuutiota niin, että se kulkee kahden vastakkaisen kärjen kautta ja kahden niiden siuvulla olevan särmän keskipisteiden kautta. Tämä kuvio on vinoneliö, jonka halkaisijat ovat sqrt3 ja sqrt2. Kun tuo taso lähtee sitten kääntymään sivusärmien keskipisteiden kautta kulkevan janan kautta, syntyy 6-kulmio. Suurin ympyrä sen sisälle tulee kun kuvio on säännöllinen, halkaisija on silloin tuo sqrt(3/2). Tuon todistaminen suurimmaksi mahdolliseksi on oma ongelmansa.

        Todistamista helpottaa symmetria joka suuntaan. Ympyrän keskipiste on kuution keskipisteessä ja ympyrän halkaisija on kuution kahden vastakkaisen sivun keskipisteet yhdistävällä janalla.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Sannan kirja USA:n bestseller!

      "Congratulations to Sanna Marin's HOPE IN ACTION, officially a USA TODAY bestseller!" Kertoo Scribner. Mitäs persut tä
      Maailman menoa
      151
      11426
    2. Oikeistolainen luki Med mod att leda : en biografi

      ...ei tykänny Sanna Marinista
      Maailman menoa
      28
      8112
    3. Metsäalan rikolliset

      Jokohan alkaa vähitellen kaatua kulissit näillä ihmiskauppaa harjoittavilla firmoilla.
      Sotkamo
      56
      5914
    4. Ruotsalaistoimittaja: "Sanna Marinin saunominen saa minut häpeämään"

      Sanna Marinin kirja saa täyslaidallisen ruotsalaislehti Expressenissä perjantaina julkaistussa kolumnissa.....voi itku..
      Maailman menoa
      164
      4850
    5. Hyvää syntymäpäivää Sanna 40 vee!!!!

      ᕼᗩᑭᑭY ᗷIᖇTᕼᗞᗩY Sister ❣️🥰 🎉🎂✨🍰🥳 🥳🎂🥂 🎉🎊🎁🎈🎂
      Maailman menoa
      16
      4687
    6. Suomen kaksikielisyys - täyttä huuhaata

      Eivätkö muuten yksilöt pysty arvioimaan mitä kieliä he tarvitsevat? Ulkomaalaiselle osaajalle riittää Suomessa kielitai
      Maailman menoa
      36
      4345
    7. Työeläkeloisinta 27,5 mrd. per vuosi

      Tuo kaikki on pois palkansaajien ostovoimasta. Ja sitten puupäät ihmettelee miksei Suomen talous kasva. No eihän se kas
      Maailman menoa
      84
      4213
    8. Missä vaiheessa

      Päätit luovuttaa suhteeni?
      Ikävä
      85
      3502
    9. Juuri muiston ne

      Rakastuneet katseesi. Huh
      Ikävä
      80
      3260
    10. Miten paljon

      Olet halunnut mun kanssa?
      Ikävä
      48
      1761
    Aihe