fillarin vanne laatikossa

Anonyymi

Kuinka suuri ympyrä (säde r) mahtuu suorankulmaisen laatikon s x s x k sisään (s=sivu ja k=korkeus).
Vaikeuskerroin ehkä kasvaa jos otettaisiin huomioon vanteen leveys eli lieriön korkeus.

Tuossa ensimmäinen ongelma tuntuu olevan kuvion hahmottaminen.
s=k eli kuution tapauksessa taitaa olla kuusikulmio ja vastaus jostain kaavasta ½*sqrt(3/2).

9

167

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      n-ulotteinen pallo m-ulotteisesssa kuutiossa, maksimi säde r = 1/2 * √(m/n)

      • Anonyymi

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Tuolla on yritetty laskeskella kuution sisällä
        https://math.stackexchange.com/questions/2570334/biggest-circle-you-can-fit-in-a-hypercube
        tuolla oleva linkki
        http://home.lu.lv/~sd20008/papers/essays/Hypercube [paper].pdf

        Miten tuollaisen hyperkuution voi kuvitella vai tarvitseeko edes että pystyy laskemaan.

        Alkuperäisessä kysymyksessä on siis aivan tavallinen 3D laatikko

        Ei noita yli 3-ulotteisia kappaleita käytännössä pysty kuvittelemaan silmiensä eteen samalla tavalla kuin 0-, 1-, 2- tai 3-ulotteisiakappaleita, mutta kyllä niitä silti on mahdollista hahmotella mielessään.

        Äärellisulotteiset avaruudet ja kappaleet toimivat kuitenkin jossain määrin samantapaisesti riippumatta siitä, onko ulottuvuuksia 2, 5 vai 185 006. Siinä kohtaa kun ulottuvuuksia onkin äärettömästi, joutuu nyrjäyttämään aivonsa aika abstraktiin näkökulmaan että asioihin saa jotain tolkkua.


    • Anonyymi

      Jos k >= s sqrt(2) niin mahtuu ympyrä jonka säde on s/sqrt(2).

    • Anonyymi

      Jos kuution sivun pituus on 1, kuinka suuri ympyrä (vanne) mahtuu kuution sisälle?

      Kun tämän hahmottaa, voi yrittää muita tapauksia. Leikatkaa jostakin purkista kuution muotoinen astia ja yrittäkää sijoittaa sinne pyöreä pahvikiekko, jonka halkaisija on suuurempi kuin kuution sivun pituus. Muodostuu suorakulmaisia kolmioita.

      • Anonyymi

        Halkaisija on sqrt(3/2) = 1,2247


      • Anonyymi

        Tuota suurin ympyrä kuutiossa voi hahmottaa siten, että ensin ajattelee kuviota, joka syntyy, kun taso leikkaa kuutiota niin, että se kulkee kahden vastakkaisen kärjen kautta ja kahden niiden siuvulla olevan särmän keskipisteiden kautta. Tämä kuvio on vinoneliö, jonka halkaisijat ovat sqrt3 ja sqrt2. Kun tuo taso lähtee sitten kääntymään sivusärmien keskipisteiden kautta kulkevan janan kautta, syntyy 6-kulmio. Suurin ympyrä sen sisälle tulee kun kuvio on säännöllinen, halkaisija on silloin tuo sqrt(3/2). Tuon todistaminen suurimmaksi mahdolliseksi on oma ongelmansa.


      • Anonyymi
        Anonyymi kirjoitti:

        Tuota suurin ympyrä kuutiossa voi hahmottaa siten, että ensin ajattelee kuviota, joka syntyy, kun taso leikkaa kuutiota niin, että se kulkee kahden vastakkaisen kärjen kautta ja kahden niiden siuvulla olevan särmän keskipisteiden kautta. Tämä kuvio on vinoneliö, jonka halkaisijat ovat sqrt3 ja sqrt2. Kun tuo taso lähtee sitten kääntymään sivusärmien keskipisteiden kautta kulkevan janan kautta, syntyy 6-kulmio. Suurin ympyrä sen sisälle tulee kun kuvio on säännöllinen, halkaisija on silloin tuo sqrt(3/2). Tuon todistaminen suurimmaksi mahdolliseksi on oma ongelmansa.

        Todistamista helpottaa symmetria joka suuntaan. Ympyrän keskipiste on kuution keskipisteessä ja ympyrän halkaisija on kuution kahden vastakkaisen sivun keskipisteet yhdistävällä janalla.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      272
      2400
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      299
      1289
    3. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      108
      1201
    4. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      83
      1201
    5. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      58
      1145
    6. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      81
      1096
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      44
      962
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      67
      897
    9. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      22
      860
    10. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      33
      767
    Aihe