fillarin vanne laatikossa

Anonyymi

Kuinka suuri ympyrä (säde r) mahtuu suorankulmaisen laatikon s x s x k sisään (s=sivu ja k=korkeus).
Vaikeuskerroin ehkä kasvaa jos otettaisiin huomioon vanteen leveys eli lieriön korkeus.

Tuossa ensimmäinen ongelma tuntuu olevan kuvion hahmottaminen.
s=k eli kuution tapauksessa taitaa olla kuusikulmio ja vastaus jostain kaavasta ½*sqrt(3/2).

9

208

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      n-ulotteinen pallo m-ulotteisesssa kuutiossa, maksimi säde r = 1/2 * √(m/n)

      • Anonyymi

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Tuolla on yritetty laskeskella kuution sisällä
        https://math.stackexchange.com/questions/2570334/biggest-circle-you-can-fit-in-a-hypercube
        tuolla oleva linkki
        http://home.lu.lv/~sd20008/papers/essays/Hypercube [paper].pdf

        Miten tuollaisen hyperkuution voi kuvitella vai tarvitseeko edes että pystyy laskemaan.

        Alkuperäisessä kysymyksessä on siis aivan tavallinen 3D laatikko

        Ei noita yli 3-ulotteisia kappaleita käytännössä pysty kuvittelemaan silmiensä eteen samalla tavalla kuin 0-, 1-, 2- tai 3-ulotteisiakappaleita, mutta kyllä niitä silti on mahdollista hahmotella mielessään.

        Äärellisulotteiset avaruudet ja kappaleet toimivat kuitenkin jossain määrin samantapaisesti riippumatta siitä, onko ulottuvuuksia 2, 5 vai 185 006. Siinä kohtaa kun ulottuvuuksia onkin äärettömästi, joutuu nyrjäyttämään aivonsa aika abstraktiin näkökulmaan että asioihin saa jotain tolkkua.


    • Anonyymi

      Jos k >= s sqrt(2) niin mahtuu ympyrä jonka säde on s/sqrt(2).

    • Anonyymi

      Jos kuution sivun pituus on 1, kuinka suuri ympyrä (vanne) mahtuu kuution sisälle?

      Kun tämän hahmottaa, voi yrittää muita tapauksia. Leikatkaa jostakin purkista kuution muotoinen astia ja yrittäkää sijoittaa sinne pyöreä pahvikiekko, jonka halkaisija on suuurempi kuin kuution sivun pituus. Muodostuu suorakulmaisia kolmioita.

      • Anonyymi

        Halkaisija on sqrt(3/2) = 1,2247


      • Anonyymi

        Tuota suurin ympyrä kuutiossa voi hahmottaa siten, että ensin ajattelee kuviota, joka syntyy, kun taso leikkaa kuutiota niin, että se kulkee kahden vastakkaisen kärjen kautta ja kahden niiden siuvulla olevan särmän keskipisteiden kautta. Tämä kuvio on vinoneliö, jonka halkaisijat ovat sqrt3 ja sqrt2. Kun tuo taso lähtee sitten kääntymään sivusärmien keskipisteiden kautta kulkevan janan kautta, syntyy 6-kulmio. Suurin ympyrä sen sisälle tulee kun kuvio on säännöllinen, halkaisija on silloin tuo sqrt(3/2). Tuon todistaminen suurimmaksi mahdolliseksi on oma ongelmansa.


      • Anonyymi
        Anonyymi kirjoitti:

        Tuota suurin ympyrä kuutiossa voi hahmottaa siten, että ensin ajattelee kuviota, joka syntyy, kun taso leikkaa kuutiota niin, että se kulkee kahden vastakkaisen kärjen kautta ja kahden niiden siuvulla olevan särmän keskipisteiden kautta. Tämä kuvio on vinoneliö, jonka halkaisijat ovat sqrt3 ja sqrt2. Kun tuo taso lähtee sitten kääntymään sivusärmien keskipisteiden kautta kulkevan janan kautta, syntyy 6-kulmio. Suurin ympyrä sen sisälle tulee kun kuvio on säännöllinen, halkaisija on silloin tuo sqrt(3/2). Tuon todistaminen suurimmaksi mahdolliseksi on oma ongelmansa.

        Todistamista helpottaa symmetria joka suuntaan. Ympyrän keskipiste on kuution keskipisteessä ja ympyrän halkaisija on kuution kahden vastakkaisen sivun keskipisteet yhdistävällä janalla.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Kuolemanrangaistus

      Mielestäni kuolemanrangaistus on väärin kaikissa tilanteissa. Vaikka joku olisi murhannut 10 ihmistä, hänen surmaaminen
      Laki ja rikos
      63
      3914
    2. Muistakaa persut, että TE petitte, ei kokoomus

      Miksikö kukaan ei arvostele kokoomusta? No sen vuoksi, että kokoomus noudattaa vaalilupauksiaan. Sen sijaan TE persut,
      Maailman menoa
      205
      3496
    3. Seuraava hallituspohja - Kokoomus, kepu, persut + KD

      Kokoomus saa ainakin 20% kannatuksen ensi vaaleissa, keskusta sanoisin noin 15%, persut todennäköisesti enemmän, ehkä 17
      Maailman menoa
      249
      2949
    4. Outo ilmiö - vasemmistolaiset eivät kirjoita mitään kokoomuksesta

      joka sentään johtaa hallitusta, ja jonka talouspolitiikkaa noudatetaan. Nämä muutamat vasemmistolaiset jotka täällä aina
      Maailman menoa
      71
      2499
    5. Maria Veitola kommentoi soutelija Saarion huomionhakuisuutta

      "Minusta on jotenkin kuvottavaa, kuinka kovalla intensiteetillä Suomi-media seuraa miessankari Jari Saarion merihätää. S
      Kotimaiset julkkisjuorut
      321
      1889
    6. Lopetan ikävöinnin

      Ei meistä enää koskaan tule mitään. Olen ikävöinyt ja kaivannut enkä saa mitään vastakaikua ja lämpöä. Parempi erillään
      Ikävä
      5
      1622
    7. Väestöstä vain vassarit vaihtuvat nopeammin kuin persut

      Kevääseen 2023 verrattuna vassareita 50 prosenttia enemmän, ja persuja 25 prosenttia vähemmän.
      Maailman menoa
      12
      1537
    8. Jos kaikki lopulta kuolevat, onko edes pahimmillakaan rikoksilla mitään väliä?

      Kaikki kuolevat lopulta. Siksi ihmisten tekemillä rikoksillakaan ei lopulta ole mitään merkitystä. Joidenkin mielestä t
      Filosofia
      2
      1496
    9. Riikka Purra ei estä tehomaksun käyttöönottoa

      Sähkön hinnoittelua koskevan määräyksen on määrä astua voimaan vuoden 2029 alusta, Energiavirastosta kerrotaan. Määräyk
      Maailman menoa
      18
      1496
    10. Muovipusseista pitäisi saada panttimaksu takaisin

      Ostan joka päivä yhden muovipussin, ja niistä palautuu keskimäärin takaisin kaupan pullomaatin yhteydessä olevaan roskik
      Maailman menoa
      51
      1471
    Aihe