Kahden parittoman erisuuren kokonaisluvun neliöillä sama etäisyys kolmanteen parittoman

Anonyymi

luvun neliöön. Kaikissa kolmessa luvussa on oltava tekijöinä vain 4k 1 alkulukuja.

[1, 29, 41] 29^2 - 1^2 = 41^2 - 29^2 = 840
[17, 53, 73]
[41, 85, 113]
[17, 137, 193]
[5, 145, 205]
.
.
.
[249935004229, 249933004481, 249937003961]
[250001000005, 249998999993, 250003000001]
...

Mitä nämä kolmikot ovat nimeltään? Google ei löydä noita oeis.org:sta tai muualtakaan sarjana. (Ovat termeinä esim. 3x3 magic square of squares:ssa, jos joku joskus pystyy sellaisen löytämään.)

Saan muodostettua noita kolmikoita miljoonittain (ei kerrannaisia) yksinkertaisella lyhyellä Python-ohjelmalla.

4

112

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ei kaikille jonkin säännön toteuttaville luvuille tai lukujoukoille ole omaa vakiintunutta nimeä, kuten Pythagoraan kolmikot tai Mersennen alkuluvut.

      Jos aiot esimerkiksi kirjoittaa niistä jotain tai julkaista lukugeneraattorisi, voit yksinkertaisesti kutsua niitä säännön R toteuttaviksi lukukolmikoiksi tai R-kolmikoiksi, kunhan selität mitä tarkoitat säännöllä R.

      • Anonyymi

        Nyt kyse on paljon ja pitkään tutkituista matematiikan perusteista. Liittyy kyllä Pythagoraan hypotenuusiin ja kokonaislukujen neliöiden yleisiin ominaisuuksiin. Ihan kaikkia perusominaisuuksia ei tietysti löydetty ennen tietokoneita, joten sarjan "nimi" ei välttämättä ole tuttu historiasta.

        Ei siis varmasti mitään uutta kenellekään kokonaislukuja tutkiville matemaatikoille. Google ei tietysti löydä mitään, jos luvut esitetään sille jotenkin väärällä tavalla tai julkaisija on esittänyt ne jotenkin sanallisesti ja matemaattisia lausekkeita käyttäen.


    • Anonyymi

      Jos keskimmäinen luku on e ja pienin luku e-m ja suurin luku e n, niin n on aina 4:llä jaollinen ja e ja m on oltava:

      e ≡1 mod 12 tai e ≡5 mod 12
      m = n 16k (k = 1, 2, 3, ...)

      Jokaiselle n modulo 64 löytyy vain yksi sopiva m modulo 64. Siis vain 16 paria.

      Jostain ihmeen syystä luvuilla (e,m,n) ei ole yhtään yhteistä alkulukutekijää. Tuo on tietysti selvää 4k 3 alkuluvuille, mutta mikä pudotaa automaattisesti myös 4k 1 alkuluvut pois?

      Kokeilkaa itse ja ihmetelkää vasta sitten.

      • Anonyymi

        Luvuilla (e,m,n) löytyy tietysti 4k 1 yhteisä alkulukutekijöitä. Ei niitä mitenkään voi pudottaa pois. Hakukoodissani oli ehtolausekkeessa painovirhe, joka teki siitä aina epätoden.

        Neliöiden erotukset y ovat:

        y = (e n)^2-e^2 = e^2-(e-m)^2;

        Tuosta voidaan voidaan ratkaista e:

        e = (m-n)/2 n*m/(n-m)

        Jälkimmäisen termin on oltava kononaisluku. Rajoittaa n ja m arvoja.

        Jos halua ratkaista 3x3 Magic square of squaren (tai todistaa sen mahdottomaksi) kannattaa keskittyä löytämään eri kolmikoista yhtäsuuria y:n arvoja. Niitä pitäsi löytyä vähintään kolme. Erittäin harvinaista. Ja näitä kolmen ryhmiä (eri y:n arvoilla) pitäsi löytyä vähintään kolme. Sitten voi tarkistaa, ovatko ne sopivia.

        Lee Morgenstern on tutkinut noita neliöitä eniten ja kehittänyt teoriota laskennan nopeuttamiseksi. Nopeudesta tässäkin on vain lähinnä kysymys lukujen kasvaessa oikeasti suuriksi. Hänen viimeksi julkaisemassaan neliössä on vain toisen lävistäjän summa väärin.

        19720769947309², 6757561171393², 11290071470263²
        10987237357337², 9483582546853², 18745169816089²
        7239541562993², 20650330341071², 9120965347253²

        Oikeassa ratkaisussa luvut saattavat olla tuhansia tai miljoonia kertoja suurempia. Kannattaa siis keskittyä löytämään pienillä luvuilla erilaisia uusia rajoittavia ehtoja. Niitä on varmasti paljon löytämättä.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Janne Ahonen E R O A A

      Taas 2 lasta jää vaille ehjää perhettä!
      Kotimaiset julkkisjuorut
      172
      3580
    2. Tekisi niin mieli laittaa sulle viestiä

      En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m
      Ikävä
      85
      1598
    3. Miksi ihmeessä?

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek
      Ateismi
      26
      1317
    4. Ootko huomannut miten

      pursuat joka puolelta. Sille joka luulee itsestään liikoja 🫵🙋🏻‍♂️
      Ikävä
      158
      1242
    5. Pitääkö penkeillä hypätä Martina?

      Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit
      Kotimaiset julkkisjuorut
      194
      1023
    6. Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut
      Maailman menoa
      16
      993
    7. Kerropa ESA miten kävi tuomioiden

      Osaako ESA kertoa miten haukkumasi kunnanhallituksen kävi.
      Puolanka
      35
      981
    8. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      69
      903
    9. Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä

      Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk
      Maailman menoa
      95
      839
    10. Se olisi ihan

      Napinpainalluksen päässä. Ei vaatisi paljon
      Ikävä
      62
      765
    Aihe