luvun neliöön. Kaikissa kolmessa luvussa on oltava tekijöinä vain 4k 1 alkulukuja.
[1, 29, 41] 29^2 - 1^2 = 41^2 - 29^2 = 840
[17, 53, 73]
[41, 85, 113]
[17, 137, 193]
[5, 145, 205]
.
.
.
[249935004229, 249933004481, 249937003961]
[250001000005, 249998999993, 250003000001]
...
Mitä nämä kolmikot ovat nimeltään? Google ei löydä noita oeis.org:sta tai muualtakaan sarjana. (Ovat termeinä esim. 3x3 magic square of squares:ssa, jos joku joskus pystyy sellaisen löytämään.)
Saan muodostettua noita kolmikoita miljoonittain (ei kerrannaisia) yksinkertaisella lyhyellä Python-ohjelmalla.
Kahden parittoman erisuuren kokonaisluvun neliöillä sama etäisyys kolmanteen parittoman
4
112
Vastaukset
- Anonyymi
Ei kaikille jonkin säännön toteuttaville luvuille tai lukujoukoille ole omaa vakiintunutta nimeä, kuten Pythagoraan kolmikot tai Mersennen alkuluvut.
Jos aiot esimerkiksi kirjoittaa niistä jotain tai julkaista lukugeneraattorisi, voit yksinkertaisesti kutsua niitä säännön R toteuttaviksi lukukolmikoiksi tai R-kolmikoiksi, kunhan selität mitä tarkoitat säännöllä R.- Anonyymi
Nyt kyse on paljon ja pitkään tutkituista matematiikan perusteista. Liittyy kyllä Pythagoraan hypotenuusiin ja kokonaislukujen neliöiden yleisiin ominaisuuksiin. Ihan kaikkia perusominaisuuksia ei tietysti löydetty ennen tietokoneita, joten sarjan "nimi" ei välttämättä ole tuttu historiasta.
Ei siis varmasti mitään uutta kenellekään kokonaislukuja tutkiville matemaatikoille. Google ei tietysti löydä mitään, jos luvut esitetään sille jotenkin väärällä tavalla tai julkaisija on esittänyt ne jotenkin sanallisesti ja matemaattisia lausekkeita käyttäen.
- Anonyymi
Jos keskimmäinen luku on e ja pienin luku e-m ja suurin luku e n, niin n on aina 4:llä jaollinen ja e ja m on oltava:
e ≡1 mod 12 tai e ≡5 mod 12
m = n 16k (k = 1, 2, 3, ...)
Jokaiselle n modulo 64 löytyy vain yksi sopiva m modulo 64. Siis vain 16 paria.
Jostain ihmeen syystä luvuilla (e,m,n) ei ole yhtään yhteistä alkulukutekijää. Tuo on tietysti selvää 4k 3 alkuluvuille, mutta mikä pudotaa automaattisesti myös 4k 1 alkuluvut pois?
Kokeilkaa itse ja ihmetelkää vasta sitten.- Anonyymi
Luvuilla (e,m,n) löytyy tietysti 4k 1 yhteisä alkulukutekijöitä. Ei niitä mitenkään voi pudottaa pois. Hakukoodissani oli ehtolausekkeessa painovirhe, joka teki siitä aina epätoden.
Neliöiden erotukset y ovat:
y = (e n)^2-e^2 = e^2-(e-m)^2;
Tuosta voidaan voidaan ratkaista e:
e = (m-n)/2 n*m/(n-m)
Jälkimmäisen termin on oltava kononaisluku. Rajoittaa n ja m arvoja.
Jos halua ratkaista 3x3 Magic square of squaren (tai todistaa sen mahdottomaksi) kannattaa keskittyä löytämään eri kolmikoista yhtäsuuria y:n arvoja. Niitä pitäsi löytyä vähintään kolme. Erittäin harvinaista. Ja näitä kolmen ryhmiä (eri y:n arvoilla) pitäsi löytyä vähintään kolme. Sitten voi tarkistaa, ovatko ne sopivia.
Lee Morgenstern on tutkinut noita neliöitä eniten ja kehittänyt teoriota laskennan nopeuttamiseksi. Nopeudesta tässäkin on vain lähinnä kysymys lukujen kasvaessa oikeasti suuriksi. Hänen viimeksi julkaisemassaan neliössä on vain toisen lävistäjän summa väärin.
19720769947309², 6757561171393², 11290071470263²
10987237357337², 9483582546853², 18745169816089²
7239541562993², 20650330341071², 9120965347253²
Oikeassa ratkaisussa luvut saattavat olla tuhansia tai miljoonia kertoja suurempia. Kannattaa siis keskittyä löytämään pienillä luvuilla erilaisia uusia rajoittavia ehtoja. Niitä on varmasti paljon löytämättä.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 1723580
Tekisi niin mieli laittaa sulle viestiä
En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m851598Miksi ihmeessä?
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek261317- 1581242
Pitääkö penkeillä hypätä Martina?
Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit1941023Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut16993- 35981
Kuinka kauan
Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?69903Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä
Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk95839- 62765