Montako ratkaisua kolmannen asteen yhtälöllä voi olla?

Anonyymi

Voiko kolmannen asteen yhtälöllä olla esimerkiksi vain ja ainoastaan kaksi ratkaisua?

26

691

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi
    • Anonyymi

      Eli siis voiko kolmannen asteen potenssiyhtälöllä olla VAIN 2 ratkaisua?
      Kyllä / Ei ?

      • Tämä ei ole kyllä/ei kysymys.


      • Anonyymi
        malaire kirjoitti:

        Tämä ei ole kyllä/ei kysymys.

        voiko kolmannen asteen potenssi yhtälöllä olla kaksi ratkaisua?


      • Anonyymi
        malaire kirjoitti:

        Tämä ei ole kyllä/ei kysymys.

        Jollain tietyllä yhtälöllä on tasan n ratkaisua.


    • Anonyymi

      Kolmannen asteen potenssiyhtälöllä voi olla kaksi ratkaisua.

      Oikein vai väärin?

      • Anonyymi

        Mietipä montako ratkaisua on yhtälöllä (x-a)(x-a)(x-b) = 0


    • Anonyymi

      Eikös tämä jo käsitelty aiemmin saman nimisessä ketjussa? Miksi ihmeessä taas kyselet?

      • Anonyymi

        Ei muista enää. Dementia vaivaa pahasti.


    • Anonyymi

      Aika hyvä kysymys sitten kuin kysyt että mikä on PI:n viimeinen desimaali

      • Anonyymi

        Pii-kantaisessa lukujärjestelmässä viimeinen piimaali on nolla.


    • Anonyymi

      Eikös tuo ole vähän kompa? Yhtälön asteluku kertoo, kuinka monta juurta yhtälöllä on. Näin ollen 3. asteen yhtälöllä on AINA 3 ratkaisua. Kaikki näistä ei välttämättä ole reaalisia - on siis mahdollista, että yhtälöllä on esim. 1 kompleksinen ja 2 reaaliratkaisua, tätäkö haettiin?

      • Anonyymi

        Väärin! Ei 3. asteen yhtälöllä voi olla kahta reaalista ratkaisua ja yhtä kompleksista. Yhtälöllä tässätarkoitetaan sellaista jonka kertoimet ovat reaaliset.
        Kts. esim. Wikipedia (engl.) : Cubic equation: Nature of the roots.


      • Anonyymi
        Anonyymi kirjoitti:

        Väärin! Ei 3. asteen yhtälöllä voi olla kahta reaalista ratkaisua ja yhtä kompleksista. Yhtälöllä tässätarkoitetaan sellaista jonka kertoimet ovat reaaliset.
        Kts. esim. Wikipedia (engl.) : Cubic equation: Nature of the roots.

        Tämä nähdään helposti, kun polynomi kirjoitetaan muodossa f(x) = a(x-b)(x-c)(x-d), missä b, cc ja d ovat nollakohdat ja a kolmannen asteen termin kerroin. Siten f(0) = -abcd, ja jos f(0) on reaalinen ja kaksi juurta (esim. c ja d) reaalisia, niin ab on reaalinen.

        Jos yksi juurista on aidosti kompleksinen ja kaksi reaalisia, on siis välttämätöntä, että polynomi on kompleksikertoiminen.

        Tuo siis on mahdollista kompleksikertoimisille kolmannen asteen polynomeille.


      • Anonyymi
        Anonyymi kirjoitti:

        Tämä nähdään helposti, kun polynomi kirjoitetaan muodossa f(x) = a(x-b)(x-c)(x-d), missä b, cc ja d ovat nollakohdat ja a kolmannen asteen termin kerroin. Siten f(0) = -abcd, ja jos f(0) on reaalinen ja kaksi juurta (esim. c ja d) reaalisia, niin ab on reaalinen.

        Jos yksi juurista on aidosti kompleksinen ja kaksi reaalisia, on siis välttämätöntä, että polynomi on kompleksikertoiminen.

        Tuo siis on mahdollista kompleksikertoimisille kolmannen asteen polynomeille.

        Yleisemmin reaalikertoimiselle polynomille näkee, että jos z on sen juuri, niin myös z:n kompleksikonjugaatti on juuri: Koska p(z) = 0, niin myös p(z):n konjugaatti on 0. Konjugointi menee summaan ja tuloon ja kertoimet eivät muutu, koska ovat reaalisia, joten saadaan, että p(z:n konjugaatti) = 0.


    • Anonyymi

      3 ratk

    • Anonyymi

      Mutta entäpä tällainen arvoitus: Kun kertoimia muutellaan, niin yleensähän juuret ovat erillisiä. Jos kuitenkin käy niin, että jossain vaiheessa kaksi juurta menee päällekkäin ja sitten eroavat, niin kumpi niistä on kumpi? Siis pisteet A ja B ovat ne juuret ja kun polynomin kertoimia jatkuvasti muutetaan jollain tavalla, niin ainahan pystytään sanomaan että tuossa menee nyt tuo A juuri ja tuossa B juuri, liikahtivat pikkuisen edellisestä olinpaikastaan. Tämä siis silloin kun ne ovat erilliset. Mutta sitten ne romahtavat yhteen. Ja lähtevät siitä taas erilleen. Kuinka sanotaan kumpi on kumpi kun ne eri suuntiin taas lähtevät???

      • Anonyymi

        Kumpi ja Kampi tappelivat. Kumpi voitti?


      • Anonyymi

        Säilyttävätkö suuntavektorinsa? Eli kun juuri muodostaa polun kun kertoimia varioidaan sileästi ja polun derivaatta voidaan olettaa nollasta eroavaksi kaikkialla.


    • Anonyymi

      Merkillistä miten tuota kommentointia riittää! Asia tuli ihan tyydyttävästi selvitetyksi jo toisessa saman nimisessä ketjussa. Ja tässäkin ketjussa jo aiemmin. Mutta kommentointeja vaan syntyy! Virheellisen vastauksen antanut otti selitysavukseen komleksikertoiset polynomit. Kas kun ei saman tien vielä yleisempää lukukuntaa!

      • Anonyymi

        P.o.: ...kompleksilukukertoimiset polynomit.


      • Anonyymi

        Ei polynomeilla ole mitään ratkaisuja oli kertomet mitä tahansa.
        Yhtälöillä voi olla ratkaisuja.


    • Anonyymi

      Jos luet tarkasti, sanoin vain, että "otti avukseen kompleksilukukertoimiset polynomit". En puhunut polynomien ratkaisuista mitään. Tosin näiden polynomien avulla sitten voidaan muodostaa yhtälöitä, esim. etsiä niiden nollakohtia.

      Taidat olla jo aika epätoivoinen kun puolustukseksesi vääristelet muiden kommentteja!

      • Anonyymi

        Taidat olla aika epätoivoinen kun huuhaajuttuja keksit puolustukseksesi.
        Aloituksessa todellakin puhuttiin yhtälöstä, ei polynomeista.


      • Anonyymi
        Anonyymi kirjoitti:

        Taidat olla aika epätoivoinen kun huuhaajuttuja keksit puolustukseksesi.
        Aloituksessa todellakin puhuttiin yhtälöstä, ei polynomeista.

        Et näy ymmärtävän suomea. Ei maha mittään.


    • Anonyymi

      Livahti mieleen vastaus kysymykseen mitä on 0/0 =ääretön tietysti mutta.

      Mikä olisi 9-asteisen yhtälön keskimmäisen yhtälön kolmannen objektiivin arvo?

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Aivosyöpää sairastava Olga Temonen TV:ssä - Viimeinen Perjantai-keskusteluohjelma ulos

      Näyttelijä-yrittäjä Olga Temonen sairastaa neljännen asteen glioomaa eli aivosyöpää, jota ei ole mahdollista leikata. Hä
      Maailman menoa
      80
      2809
    2. Pelotelkaa niin paljon kuin sielu sietää.

      Mutta ei mene perille asti. Miksi Venäjä hyökkäisi Suomeen? No, tottahan se tietenkin on jos Suomi joka ei ole edes soda
      Maailman menoa
      295
      1626
    3. Mikä saa ihmisen tekemään tällaista?

      Onko se huomatuksi tulemisen tarve tosiaan niin iso tarve, että nuoruuttaan ja tietämättömyyttään pilataan loppuelämä?
      Sinkut
      246
      1527
    4. Minkä merkkisellä

      Autolla kaivattusi ajaa? Mies jota kaipaan ajaa Mersulla.
      Ikävä
      87
      1371
    5. IL - VARUSMIEHIÄ lähetetään jatkossa NATO-tehtäviin ulkomaille!

      Suomen puolustuksen uudet linjaukset: Varusmiehiä suunnitellaan Nato-tehtäviin Puolustusministeri Antti Häkkänen esittel
      Maailman menoa
      401
      1349
    6. Nyt kun Pride on ohi 3.0

      Edelliset kaksi ketjua tuli täyteen. Pidetään siis edelleen tämä asia esillä. Raamattu opettaa johdonmukaisesti, että
      Luterilaisuus
      396
      1273
    7. Esko Eerikäinen tatuoi kasvoihinsa rakkaan nimen - Kärkäs kommentti "Ritvasta" lävähti somessa

      Ohhoh! Esko Eerikäinen on ottanut uuden tatuoinnin. Kyseessä ei ole mikä tahansa kuva minne tahansa, vaan Eerikäisen tat
      Suomalaiset julkkikset
      38
      1027
    8. Kiitos nainen

      Kuitenkin. Olet sitten ajanmerkkinä. Tuskin enää sinua näen ja huomasitko, että olit siinä viimeisen kerran samassa paik
      Tunteet
      2
      999
    9. Hyväksytkö sinä sen että päättäjämme ei rakenna rauhaa Venäjän kanssa?

      Vielä kun sota ehkäpä voitaisiin välttää rauhanponnisteluilla niin millä verukkeella voidaan sanoa että on hyvä asia kun
      Maailman menoa
      329
      854
    10. Miksi Purra-graffiti ei nyt olekkaan naisvihaa?

      "Pohtikaapa reaktiota, jos vastaava graffiti olisi tehty Sanna Marinista", kysyy Tere Sammallahti. Helsingin Suvilahden
      Maailman menoa
      254
      832
    Aihe