Montako ratkaisua kolmannen asteen yhtälöllä voi olla?

Anonyymi

Voiko kolmannen asteen yhtälöllä olla esimerkiksi vain ja ainoastaan kaksi ratkaisua?

26

898

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi
    • Anonyymi

      Eli siis voiko kolmannen asteen potenssiyhtälöllä olla VAIN 2 ratkaisua?
      Kyllä / Ei ?

      • Tämä ei ole kyllä/ei kysymys.


      • Anonyymi
        malaire kirjoitti:

        Tämä ei ole kyllä/ei kysymys.

        voiko kolmannen asteen potenssi yhtälöllä olla kaksi ratkaisua?


      • Anonyymi
        malaire kirjoitti:

        Tämä ei ole kyllä/ei kysymys.

        Jollain tietyllä yhtälöllä on tasan n ratkaisua.


    • Anonyymi

      Kolmannen asteen potenssiyhtälöllä voi olla kaksi ratkaisua.

      Oikein vai väärin?

      • Anonyymi

        Mietipä montako ratkaisua on yhtälöllä (x-a)(x-a)(x-b) = 0


    • Anonyymi

      Eikös tämä jo käsitelty aiemmin saman nimisessä ketjussa? Miksi ihmeessä taas kyselet?

      • Anonyymi

        Ei muista enää. Dementia vaivaa pahasti.


    • Anonyymi

      Aika hyvä kysymys sitten kuin kysyt että mikä on PI:n viimeinen desimaali

      • Anonyymi

        Pii-kantaisessa lukujärjestelmässä viimeinen piimaali on nolla.


    • Anonyymi

      Eikös tuo ole vähän kompa? Yhtälön asteluku kertoo, kuinka monta juurta yhtälöllä on. Näin ollen 3. asteen yhtälöllä on AINA 3 ratkaisua. Kaikki näistä ei välttämättä ole reaalisia - on siis mahdollista, että yhtälöllä on esim. 1 kompleksinen ja 2 reaaliratkaisua, tätäkö haettiin?

      • Anonyymi

        Väärin! Ei 3. asteen yhtälöllä voi olla kahta reaalista ratkaisua ja yhtä kompleksista. Yhtälöllä tässätarkoitetaan sellaista jonka kertoimet ovat reaaliset.
        Kts. esim. Wikipedia (engl.) : Cubic equation: Nature of the roots.


      • Anonyymi
        Anonyymi kirjoitti:

        Väärin! Ei 3. asteen yhtälöllä voi olla kahta reaalista ratkaisua ja yhtä kompleksista. Yhtälöllä tässätarkoitetaan sellaista jonka kertoimet ovat reaaliset.
        Kts. esim. Wikipedia (engl.) : Cubic equation: Nature of the roots.

        Tämä nähdään helposti, kun polynomi kirjoitetaan muodossa f(x) = a(x-b)(x-c)(x-d), missä b, cc ja d ovat nollakohdat ja a kolmannen asteen termin kerroin. Siten f(0) = -abcd, ja jos f(0) on reaalinen ja kaksi juurta (esim. c ja d) reaalisia, niin ab on reaalinen.

        Jos yksi juurista on aidosti kompleksinen ja kaksi reaalisia, on siis välttämätöntä, että polynomi on kompleksikertoiminen.

        Tuo siis on mahdollista kompleksikertoimisille kolmannen asteen polynomeille.


      • Anonyymi
        Anonyymi kirjoitti:

        Tämä nähdään helposti, kun polynomi kirjoitetaan muodossa f(x) = a(x-b)(x-c)(x-d), missä b, cc ja d ovat nollakohdat ja a kolmannen asteen termin kerroin. Siten f(0) = -abcd, ja jos f(0) on reaalinen ja kaksi juurta (esim. c ja d) reaalisia, niin ab on reaalinen.

        Jos yksi juurista on aidosti kompleksinen ja kaksi reaalisia, on siis välttämätöntä, että polynomi on kompleksikertoiminen.

        Tuo siis on mahdollista kompleksikertoimisille kolmannen asteen polynomeille.

        Yleisemmin reaalikertoimiselle polynomille näkee, että jos z on sen juuri, niin myös z:n kompleksikonjugaatti on juuri: Koska p(z) = 0, niin myös p(z):n konjugaatti on 0. Konjugointi menee summaan ja tuloon ja kertoimet eivät muutu, koska ovat reaalisia, joten saadaan, että p(z:n konjugaatti) = 0.


    • Anonyymi

      3 ratk

    • Anonyymi

      Mutta entäpä tällainen arvoitus: Kun kertoimia muutellaan, niin yleensähän juuret ovat erillisiä. Jos kuitenkin käy niin, että jossain vaiheessa kaksi juurta menee päällekkäin ja sitten eroavat, niin kumpi niistä on kumpi? Siis pisteet A ja B ovat ne juuret ja kun polynomin kertoimia jatkuvasti muutetaan jollain tavalla, niin ainahan pystytään sanomaan että tuossa menee nyt tuo A juuri ja tuossa B juuri, liikahtivat pikkuisen edellisestä olinpaikastaan. Tämä siis silloin kun ne ovat erilliset. Mutta sitten ne romahtavat yhteen. Ja lähtevät siitä taas erilleen. Kuinka sanotaan kumpi on kumpi kun ne eri suuntiin taas lähtevät???

      • Anonyymi

        Kumpi ja Kampi tappelivat. Kumpi voitti?


      • Anonyymi

        Säilyttävätkö suuntavektorinsa? Eli kun juuri muodostaa polun kun kertoimia varioidaan sileästi ja polun derivaatta voidaan olettaa nollasta eroavaksi kaikkialla.


    • Anonyymi

      Merkillistä miten tuota kommentointia riittää! Asia tuli ihan tyydyttävästi selvitetyksi jo toisessa saman nimisessä ketjussa. Ja tässäkin ketjussa jo aiemmin. Mutta kommentointeja vaan syntyy! Virheellisen vastauksen antanut otti selitysavukseen komleksikertoiset polynomit. Kas kun ei saman tien vielä yleisempää lukukuntaa!

      • Anonyymi

        P.o.: ...kompleksilukukertoimiset polynomit.


      • Anonyymi

        Ei polynomeilla ole mitään ratkaisuja oli kertomet mitä tahansa.
        Yhtälöillä voi olla ratkaisuja.


    • Anonyymi

      Jos luet tarkasti, sanoin vain, että "otti avukseen kompleksilukukertoimiset polynomit". En puhunut polynomien ratkaisuista mitään. Tosin näiden polynomien avulla sitten voidaan muodostaa yhtälöitä, esim. etsiä niiden nollakohtia.

      Taidat olla jo aika epätoivoinen kun puolustukseksesi vääristelet muiden kommentteja!

      • Anonyymi

        Taidat olla aika epätoivoinen kun huuhaajuttuja keksit puolustukseksesi.
        Aloituksessa todellakin puhuttiin yhtälöstä, ei polynomeista.


      • Anonyymi
        Anonyymi kirjoitti:

        Taidat olla aika epätoivoinen kun huuhaajuttuja keksit puolustukseksesi.
        Aloituksessa todellakin puhuttiin yhtälöstä, ei polynomeista.

        Et näy ymmärtävän suomea. Ei maha mittään.


    • Anonyymi

      Livahti mieleen vastaus kysymykseen mitä on 0/0 =ääretön tietysti mutta.

      Mikä olisi 9-asteisen yhtälön keskimmäisen yhtälön kolmannen objektiivin arvo?

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Hyvää syntymäpäivää Sanna 40 vee!!!!

      ᕼᗩᑭᑭY ᗷIᖇTᕼᗞᗩY Sister ❣️🥰 🎉🎂✨🍰🥳 🥳🎂🥂 🎉🎊🎁🎈🎂
      Maailman menoa
      126
      5676
    2. Suomen kaksikielisyys - täyttä huuhaata

      Eivätkö muuten yksilöt pysty arvioimaan mitä kieliä he tarvitsevat? Ulkomaalaiselle osaajalle riittää Suomessa kielitai
      Maailman menoa
      98
      4876
    3. Työeläkeloisinta 27,5 mrd. per vuosi

      Tuo kaikki on pois palkansaajien ostovoimasta. Ja sitten puupäät ihmettelee miksei Suomen talous kasva. No eihän se kas
      Maailman menoa
      140
      4834
    4. Mikä on vaikeinta siinä, että menetti yhteyden kaivattuun, jota vielä ajattelee?

      Mikä jäi kaihertamaan? Jos jokin olisi voinut mennä toisin, mitä se olisi ollut? Mitä olisit toivonut vielä ehtiväsi san
      Ikävä
      395
      2459
    5. Kerro kaivattusi etunimi

      Miehille..
      Ikävä
      131
      2380
    6. Persut rahoittavat velkarahalla rikkaiden ökyelämää

      Minkä vuoksi persut eivät leikkaa rikkailta, joilla on maksukykyä? Tuskinpa tuo persujen käytös saa Suomen kansalta hyv
      Maailman menoa
      4
      2032
    7. 115
      1975
    8. Sulla on mies

      Aivan liikaa naisia.
      Ikävä
      256
      1637
    9. 383
      1397
    10. Pääsit koskettamaan

      Sellaista osaa minussa jota kukaan ei ole ennen koskettanut. Siksi on hyvin vaikea unohtaa sinut kokonaan.
      Ikävä
      60
      1243
    Aihe