Miten ratkaistaan 3 potenssiin X potenssiin 2 = 2 potenssiin 4 potenssiin X?
Yhtälön ratkaisua
7
276
Vastaukset
- Anonyymi
Tarvitset tuossa sulut. Onko siinä 3^(x^2) vai (3^x)^2? Joka tapauksessa ottamalla puolittain logaritmin pääset eteen päin. Koska molemmat puolet ovat positiivisia ja logaritmi on aidosti kasvava, niin tämä "on sallittua". Sitten käytä logaritmin tiettyä sääntöä... Mitä olikaan log(a^b)?
- Anonyymi
3^(x^2)=2^(4^x)
- Anonyymi
Anonyymi kirjoitti:
3^(x^2)=2^(4^x)
Ei taida auttaa puolittain logaritmin ottaminen?
- Anonyymi
Anonyymi kirjoitti:
Ei taida auttaa puolittain logaritmin ottaminen?
Kyllä se vähän auttaa, mutta ratkaisuun pitää käyttää Lambertin W-funktiota. (Tai voihan sitä suoraan sanoa, että funktio g on 3^(x^2) - 2^(4^x):n käänteisfunktio ja ratkaisu on g(0), mutta W-funktio nyt on yleisesti tunnettu). W-funktion määrittelevä ominaisuus on, että W(xe^x) = x eli se on xe^x:n käänteisfunktio.
Saadaan
x^2 4^(-x) = log(2)/log(3)
josta neliöjuurella (pitää valita miinus-merkki)
x 2^(-x) = -sqrt(log(2)/log(3))
eli
-x e^-(log(2)x) = sqrt(log(2)/log(3))
eli
-log(2)x e^(-log(2)x) = sqrt(log(2)/log(3)) / log(2) =: c = 0,55...
Sitten raapaistaan W-funktio puolittain, jolloin
-log(2)x = W(c)
ja
x = -W(c)/log(2) = -0,544574. - Anonyymi
Anonyymi kirjoitti:
Kyllä se vähän auttaa, mutta ratkaisuun pitää käyttää Lambertin W-funktiota. (Tai voihan sitä suoraan sanoa, että funktio g on 3^(x^2) - 2^(4^x):n käänteisfunktio ja ratkaisu on g(0), mutta W-funktio nyt on yleisesti tunnettu). W-funktion määrittelevä ominaisuus on, että W(xe^x) = x eli se on xe^x:n käänteisfunktio.
Saadaan
x^2 4^(-x) = log(2)/log(3)
josta neliöjuurella (pitää valita miinus-merkki)
x 2^(-x) = -sqrt(log(2)/log(3))
eli
-x e^-(log(2)x) = sqrt(log(2)/log(3))
eli
-log(2)x e^(-log(2)x) = sqrt(log(2)/log(3)) / log(2) =: c = 0,55...
Sitten raapaistaan W-funktio puolittain, jolloin
-log(2)x = W(c)
ja
x = -W(c)/log(2) = -0,544574.Miksei Wolfram Alpha osaa laskea tätä?
Osaa kyllä laskea helppoja päässälaskuja esim. 3^x^2=81 eli ymmärtää potenssin potenssit. - Anonyymi
Anonyymi kirjoitti:
Miksei Wolfram Alpha osaa laskea tätä?
Osaa kyllä laskea helppoja päässälaskuja esim. 3^x^2=81 eli ymmärtää potenssin potenssit.Kirjoita alkuun solve, niin johan jekkasee. Löytyyhän sieltä yksi kompleksiratkaisukin tuon x=-0.544574:n lisäksi.
- Anonyymi
Anonyymi kirjoitti:
Kirjoita alkuun solve, niin johan jekkasee. Löytyyhän sieltä yksi kompleksiratkaisukin tuon x=-0.544574:n lisäksi.
Solven ja natural languagen kanssa toimi. Miksi ei sitten toiminut math input muodossa? Ei mitään eroa. Eihän tuossa ole mitään logiikkaa. Ratkaisee kyllä helpommat ihan ongelmitta.
Rahastusyritykset kyllä ymmärrän, muttei siitä nyt ollut kysymys. Joku merkonomi on tainnut päästä sotkemaan jotain.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Me työeläkeläiset äänestämme SDP:tä
SDP on luonut koko työeläkejärjestelmän, jonka hedelmistä saamme nyt nauttia. Kansaneläkelaitos on Maalaisliiton tekele,2075240Eikö tunnukin kamalalta, kun en
anna periksi vaikka parhaasi olet tehnyt antaaksesi täystyrmäyksen? Ja kyllähän minä monta iskua olen saanut ja maannut813716SDP on selvästi paras valinta äänestyskopissa
Puolueella on arvomaailma kohdallaan, sillä on hyvä CV itsenäisen Suomen historiassa vastuunkantajana ja hyvinvointivalt663602Persut on Suomen mamutuspuolue nro 1.
Heti ensimmäisenä persuvuonna 2015 maahantoivat Suomeen 35 tuhatta kunniavierastaan. Tuoreimpana persuvuonna 2025 pers153528SDP:n johto pesi kätensä häirintäkohusta
"Suurimman oppositiopuolue SDP:n johto olisi todennäköisimmin halunnut vaieta puolueen ympärillä velloneen häirintäkohun433159Kenen juontajan pitäisi voittaa tänään Kultainen Venla? Ehdolla Pimiä, Holma ja Vaaherkumpu
Kultainen Venla gaalassa jaetaan tänään tv-alan palkintoja. Yksi suosituimmista kategorioista on Juontaja. Vappu Pimiä1062360SDP:n selitykset ontuu pahasti - "On käsitelty heti, mutta kukaan ei tiedä"
Kokoomuslaiset pistää taas demareita nippuun. Tuppuraisen mukaan mukaan SDP:n useat ahdistelutapaukset on käsitelty het412346Oletko nainen turhautunut, kun en tule juttelemaan siellä?
Haluaisin tottakai tulla. Älä käsitä väärin. Ehkä ensi kerralla?312194Antti Lindtman: "Ainahan kaikenlaisia huhuja liikkuu"
Näin hän siis vastaa SDP:n häirintäkohuun, väistelee vastuutaan Juttuhan on niin, että Lindtman ja Tuppurainen on tasan762140Mitä saa sanoa?
Palstalla tänään sanottua: ” Kaikki riippuu siitä, miten asian esittää,” Onko siis niin, että saa muita pomottaa ja922079