Miten tämä ratkaistaan?
y+y'=y''+y'''
11
174
Vastaukset
- Anonyymi
Laita youtubeen hakusanaksi michael penn y y'=y'' y'''.
- Anonyymi
Laita youtubeen hakusanaksi michael penn y y'=y'' y'''.
Penn tuossa alkuvaiheessa päätyy sijoituksen jälkeen yhtälöön : u''=u , ja sitten kirjoittaa sille itsestään selvyytenä ratkaisun , jonka sai kahden yhtälön toteuttavan ratkaisun summana, eli
u=C1*e^(x) C2*e^(-x).
Itsestään selvä se tietysti onkin, mutta miten tuo ratkaisu saadaan laskemalla, käyttämättä myöskään karakteristista yhtälöä ? Ei siis mitenkään käytetä yritettä u=e^(rx), eikä myöskään oteta taulukoista taikka netistä yhtään mitään valmista ratkaisua, kynällä ja paperilla vaan. - Anonyymi
Anonyymi kirjoitti:
Laita youtubeen hakusanaksi michael penn y y'=y'' y'''.
Penn tuossa alkuvaiheessa päätyy sijoituksen jälkeen yhtälöön : u''=u , ja sitten kirjoittaa sille itsestään selvyytenä ratkaisun , jonka sai kahden yhtälön toteuttavan ratkaisun summana, eli
u=C1*e^(x) C2*e^(-x).
Itsestään selvä se tietysti onkin, mutta miten tuo ratkaisu saadaan laskemalla, käyttämättä myöskään karakteristista yhtälöä ? Ei siis mitenkään käytetä yritettä u=e^(rx), eikä myöskään oteta taulukoista taikka netistä yhtään mitään valmista ratkaisua, kynällä ja paperilla vaan.Sitä ei oikein saa, ellei käytä jollain kohtaa sijoitusta u=sinh(x/C), joka sisältää juuri näitä e^x ja e^(-x) termejä.
- Anonyymi
Anonyymi kirjoitti:
Sitä ei oikein saa, ellei käytä jollain kohtaa sijoitusta u=sinh(x/C), joka sisältää juuri näitä e^x ja e^(-x) termejä.
Se sijoitus on kylläkin (u/C)=sinh(t), tai cosh(t)
- Anonyymi
Ratkaisu on homogeenisen ja yksityisratkaisun summa. Tässä niitä homogeenisia on kuitenkin kaksi, joiden ratkaisut ovat C1*e^(-x) ja C2*e^(-x). Yksityisratkaisu on C3*e^x
Ratkaisu on siis noiden kolmen summa.- Anonyymi
Kyllä tämä pitää ratkaista ihan protikollan mukaan , eli karakteristisen yhtälön juuret kun ovat 1, ja kaksoisjuuri -1, niin ratkaisu on: y=C1*e^x C2*e^(-x) C3*x*e^(-x)
- Anonyymi
Mitä vikaa heterogeeneissä on?
- Anonyymi
Kts. Wikipedia (eng.): Characteristic equation (calculus) kohta Repeated real roots.
Yhtälösi on muotoa y''' y'' - y' - y = 0, karakteristinen yhtälö on
r^3 r^2 - r - 1 = 0 ja sillä on juuri r = 1 ja kaksinkertainen juuri r = - 1.
r^3 r^2 - r - 1 = (r-1) (r 1)^2 - Anonyymi
Riippuu, haluatko kaikki ratkaisut vai riittääkö löytää yksi.
Jos yksi riittää, se löytyy arvaamalla. Vakiofunktio y=0 koko määrittelyjoukossa toteuttaa tuon yhtälön.
Jos haluat kaikki ratkaisut, käy differentiaaliyhtälöiden kurssi. Tai jos et halua oikeasti oppia mitään, niin googlaa ratkaisu. - Anonyymi
Laitapa joku hirvittävän monimutkainen tuhansia muuttujia sisältävä rekursiivinen funktio joka kutsuu aina itse itseään uudelleen loopissa ja siihen vastaus :D
- Anonyymi
Helposti. Kirjoitat vaan yhtälön wolfram alphaan niin saat sekunnin murto-osassa vastauksen. Niin helppoa kaikki tänä päivänä.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Miksi persut eivät häädä mamuja pois Suomesta?
Sitä vartenhan persut äänestettiin valtaan. Nyt valta on persuilla. Mamut nostaa työttömyyskorvauksia. Persut huutaa mam2386031Eduskunnan setämiehet eivät häiritse
Porvariston sedät kertoivat kuorossa, että eivät tiedä häirinnästä mitään.394848KL - Sähköautoilu aiheuttaa lisäkustannuksia muille tehopiikkimaksujen muodossa!
Kauppalehti 15.1.2026 Kommentti / Sähköautoista tuli ongelma – Uusi ”vero” uhkaa Kun perhe ostaa sähköauton ja laittaa104286Jaguar i pace sähköauto hajosi. Jopa 100 tonnia akun vaihto. Edullisia kilometrejä
https://www.iltalehti.fi/autouutiset/a/fcaa5ae4-c04d-414d-ac54-dab991758b2e Tuo että sähköautossa ei lämmitys toimi on123031Sanna Marinille pedataan paluuta pääministeriksi?
Näyttäisi mylly lähteneen käyntiin nyt toden teolla. Nykyiset oikeistodemarit haukutaan vasemmistodemareiden toimesta ni1192997Muistakaa demarit, että TE petitte, ei vihreät tai vas.liitto
Te veitte eduskunnasta turvallisen tilan, veditte sen viemäristä alas. Te demarit, itsensä ylentäneet moraalinvartijat,772469Silminnäkijät kertovat IS:lle useista törkeistä SDP:ssä tapahtuneista häirintätapauksista.
https://www.is.fi/politiikka/art-2000011749874.html Silminnäkijöiden Iltasanomille kertomusten mukaan SDP:ssä on tapahtu1212426Nainen, kaiken aikaa olin yläpuolella
Ja olen edelleen kaiken yläpuolella. Ja niin on aina oleva. :/1901689- 461649
- 691366