Trigonometriset funktiot

Anonyymi

Antakaa apua !!! Olen yrittänyt kaikkeni (oikeesti)

Kuinka tämä ratkaistaan:

sin x = - cos x

KIITOS kaikille apua antaneille :)

21

188

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Mitä on tangentti?

      • Anonyymi

        Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.


      • Anonyymi
        Anonyymi kirjoitti:

        Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.

        Veikkaan, että sin(pi/4) antaa saman tuloksen kuin - cos (pi/4).


    • Anonyymi

      x = -pi/4

      • Anonyymi

        Perustelu:
        e^ix = cos(x) i sin(x)
        e^-ix = cos(x)-i sin(x)
        i=e^i pi/2

        sin(x) = (1/2i) (e^ix - e^-ix )
        cos(x) = (1/2) (e^ix e^-ix )

        (1/2i) (e^ix - e^-ix ) = -(1/2) (e^ix e^-ix ) # sin(x) = -cos(x)
        (1/i) (e^ix - e^-ix ) = -(e^ix e^-ix )

        e^i(x-pi/2) - e^-i(x-pi/2) = -e^ix - e^-ix
        e^-ipi/2 (e^ix - e^-ix ) = -(e^ix e^-ix )
        (e^-ipi/2 1) e^ix = (e^-ipi/2 -1)e^-ix
        ln (e^-ipi/2 1) ix = ln (e^-ipi/2 -1) -ix
        2ix = ln (e^-ipi/2 -1) - ln (e^-ipi/2 1) = ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
        x = (1/2i ) ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
        x = (1/2i ) ln( 1/i -1)/ ( 1/i 1 ) )
        x = (1/2i ) ln( 1 -i)/ ( 1 i ) )
        x = (1/2i ) ln( 1 -i)(1 i)/ ( 1 i )^2 )
        x = (1/2i ) ln( 2)/ ( 2i ) ) = (1/2i ) ln( 1/ i ) = - (1/2i ) ln(i) = - (1/2i ) i pi/2 = -pi/4


    • Anonyymi

      Käytä apuna yksikköympyrää. Kutsutaan tehtävän x:ää nyt t:ksi niin se ei sekoitu koordinaatteihin sillä yksikköympyrällä x=cos t ja y=sin t. Nyt tehtävän yhtälö kuuluu että y = -x. Eli ratkaisut ovat yksikköympyrän ja suoran y = -x leikkauspisteet (tai siis katsot sen kulman siitä). Nehän ovat luoteessa ja kaakossa eli kulmat 3π/4 ja -π/4.

    • Anonyymi

      x = (4 *π * n) / 4, n∈ℤ

    • Anonyymi

      cos(x) = sqrt(1-sin^2(x))
      sin(x) = - sqrt(1-sin^2(x))
      sin^2(x) = 1 - sin^2(x)
      sin^2(x) = 1/2
      sin(x) = /- 1/sqrt(2)
      Jos x = pii/4 niin sin(pii/4) = 1/sqrt(2) ja cos(pii/4) = 1/sqrt(2) joten yhtälö ei toteudu.
      Kun x = - pii/4 on sin(- pii/4) = - 1/sqrt(2) = - cos(pii/4) ja yhtälö toteutuu.
      Sini- ja kosinifunktioiden jakso on 2 pii joten
      x = - pii/4 n 2 pii missä n on kokonaisluku (pos., neg. tai 0).

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Muista, että välillä (π/2, 3π/2) ja vastaavilla

        cos(x) = -sqrt(1-sin^2(x)).

        Tässä havainnollistus: https://www.desmos.com/calculator/j858hhtxw1

        Vastaukseksi tulee x = -π/4 nπ, n∈ℤ.

        Olet oikeassa.


    • Anonyymi

      Tässä olisi vielä yksi ratkaisu.
      Tutkitaan siis milloin sin(x) cos(x)=0.
      Kirjoita x = x π/4 - π/4 ja käytä summakaavaa, jolloin saat että

      sin(x) cos(x)
      = cos(x π/4)sin(-π/4) sin(x π/4)cos(-π/4) cos(x π/4)cos(-π/4) - sin(x π/4)sin(-π/4)
      = 2/sqrt(2) sin(x π/4)

      Tämä on nolla, kun x = -π/4 nπ, missä n on kokonaisluku.

    • Anonyymi

      Sini- ja kosinikäppyrät ovat täysin identtisiä. Kosini on 90 astetta edellä.

      cos x = sin(pi/2 x). Sijoitetaan tämä annettuun yhtälöön:

      sin x = -sin(pi/2 x)

      x = -pi/2 - x. => x = -pi/4. Toistuu pi:n välein..

      • Anonyymi

        Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.


      • Anonyymi

        Eikä ole. Sini on 90 astetta jäljessä.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.

        Kuvan piirtäminen on oikeastaan lunttausta. Helpottaa monien ongelmien ratkaisuja liikaa. Jos kuvan piirtää riittävän tarkasti, siitähän näkyy ratkaisut usein lähes parin numeron tarkkuudella.

        Jos kuvien piirtäminen kiellettäisiin, kaikki peruskoululaiset alkaisivat piirtää niitä salaa ja oppisivat ihan liikaa. Opettajia ei enää edes tarvittaisi. Huono juttu.


    • Anonyymi

      Mitäs tämmöiset?
      a) Kulmaan lisättäessä 0,5, sen tangentti kolminkertaistuu. Ratkaise kulma.
      b) Kulmaan lisättäessä 0,3, sen sini kaksinkertaistuu. Ratkaise kulma.
      Vastauksissa vaaditaan kolmen desimaalin tarkkuuta.

      Ovatko nämä yhtälöt oikeita:
      a) tan(x 0,5) = 3 tan x
      b) sin(x 0,3) = 2 sin x
      ?

      • Anonyymi

        Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.


      • Anonyymi
        Anonyymi kirjoitti:

        Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.

        Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.


      • Anonyymi
        Anonyymi kirjoitti:

        Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.

        a) tan(x 0,5) = 3 tan x
        (tan(⁡x) tan(⁡0,5))/(1-tan⁡(x) tan⁡(0,5))=3 tan x

        b) sin(x 0,3) = 2 sin x
        sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x

        Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan?


      • Anonyymi
        Anonyymi kirjoitti:

        a) tan(x 0,5) = 3 tan x
        (tan(⁡x) tan(⁡0,5))/(1-tan⁡(x) tan⁡(0,5))=3 tan x

        b) sin(x 0,3) = 2 sin x
        sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x

        Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan?

        Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.


      • Anonyymi
        Anonyymi kirjoitti:

        Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.

        b) sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x, jaetaan cos(x):llä:
        tan(x)*cos(0,3) sin(0,3) = 2*tan(x)
        (2-cos(0,3))*tan(x) = sin(0,3)
        tan(x) = sin(0,3)/(2-cos(0,3)) = 0,283
        x = arctan(0,283) = 0,276


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. IL - Patteriauto syttyi parkkihallissa Tampereella - 50 autoa LUNASTUKSEEN!

      "Palon aikaan parkkihallissa oli 90 autoa, joista noin 50 tuhoutui palossa korjauskelvottomiksi. Lisäksi palo vaurioitti
      Maailman menoa
      237
      45139
    2. Polttomoottoriauto tulessa parkkihallissa Tampereella

      Pystyy näkemättä jo sanomaan, koska sähköautoissa ei ole palavia nesteitä lainkaan. Ihme ettei polttomoottoriautoja ole
      Maailman menoa
      120
      25951
    3. SDP palauttaa Suomen kansalle kulta-ajat

      Hyvinvointivalto on pääosin SDP:n ja osin myös Maalaisliiton rakentama. Hyvinvointivaltion ylläpito edellyttää oikeude
      Maailman menoa
      322
      15641
    4. Persut JYTKYTTÄÄ ylös, ohi kepun! +2,1 %

      Persut palasi kolmen suurimman joukkoon ja on matkalla kohti kevään 2027 eduskuntavaalivoittoa. Sosialistit ovat syöksy
      Maailman menoa
      162
      10778
    5. Älkää vassarit kuvitelko, että Marinin kulta-ajat palaavat

      Vaikka demarit voittaisivat seuraavat vaalit, se ei palauta Marinin taskut-täyteen-kelasta-aikaa takaisin, ei voi eikä h
      Maailman menoa
      122
      9697
    6. Sanna Marin saa ylistystä Hillary Clintonilta

      Jos joku ei tiedä kuka tämä rouva Hillary Clinton on, niin kerrottakoon "fun fact", eli hän on se keneltä Donald Trump
      Maailman menoa
      36
      9211
    7. Ja jälleen uusi latauksessa olleen sähköauton palo! Nyt Keravan Prisman parkkihallissa.

      IS 3.10.2025 Latauksessa ollut sähköauto syttyi yöllä tuleen Keravan Prisman parkkihallissa, Keski-Uudenmaan pelastusla
      Maailman menoa
      84
      8456
    8. Kristillisistä Siionisteista asiallista tietoa Hesarissa.

      KD ja Persut ovat kaiken takana avoimesti!
      Maailman menoa
      30
      7213
    9. 239
      6811
    10. Gallup, PS:lle JÄRISYTTÄVÄ nousu, SDP suurin laskija

      https://yle.fi/a/74-20186114 PS kovaa vauhtia nousemassa ennen 2027 vaaleja suurimmaksi puolueeksi. Nyt mennään jo etua
      Maailman menoa
      219
      6463
    Aihe