Trigonometriset funktiot

Anonyymi

Antakaa apua !!! Olen yrittänyt kaikkeni (oikeesti)

Kuinka tämä ratkaistaan:

sin x = - cos x

KIITOS kaikille apua antaneille :)

21

228

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Mitä on tangentti?

      • Anonyymi

        Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.


      • Anonyymi
        Anonyymi kirjoitti:

        Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.

        Veikkaan, että sin(pi/4) antaa saman tuloksen kuin - cos (pi/4).


    • Anonyymi

      x = -pi/4

      • Anonyymi

        Perustelu:
        e^ix = cos(x) i sin(x)
        e^-ix = cos(x)-i sin(x)
        i=e^i pi/2

        sin(x) = (1/2i) (e^ix - e^-ix )
        cos(x) = (1/2) (e^ix e^-ix )

        (1/2i) (e^ix - e^-ix ) = -(1/2) (e^ix e^-ix ) # sin(x) = -cos(x)
        (1/i) (e^ix - e^-ix ) = -(e^ix e^-ix )

        e^i(x-pi/2) - e^-i(x-pi/2) = -e^ix - e^-ix
        e^-ipi/2 (e^ix - e^-ix ) = -(e^ix e^-ix )
        (e^-ipi/2 1) e^ix = (e^-ipi/2 -1)e^-ix
        ln (e^-ipi/2 1) ix = ln (e^-ipi/2 -1) -ix
        2ix = ln (e^-ipi/2 -1) - ln (e^-ipi/2 1) = ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
        x = (1/2i ) ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
        x = (1/2i ) ln( 1/i -1)/ ( 1/i 1 ) )
        x = (1/2i ) ln( 1 -i)/ ( 1 i ) )
        x = (1/2i ) ln( 1 -i)(1 i)/ ( 1 i )^2 )
        x = (1/2i ) ln( 2)/ ( 2i ) ) = (1/2i ) ln( 1/ i ) = - (1/2i ) ln(i) = - (1/2i ) i pi/2 = -pi/4


    • Anonyymi

      Käytä apuna yksikköympyrää. Kutsutaan tehtävän x:ää nyt t:ksi niin se ei sekoitu koordinaatteihin sillä yksikköympyrällä x=cos t ja y=sin t. Nyt tehtävän yhtälö kuuluu että y = -x. Eli ratkaisut ovat yksikköympyrän ja suoran y = -x leikkauspisteet (tai siis katsot sen kulman siitä). Nehän ovat luoteessa ja kaakossa eli kulmat 3π/4 ja -π/4.

    • Anonyymi

      x = (4 *π * n) / 4, n∈ℤ

    • Anonyymi

      cos(x) = sqrt(1-sin^2(x))
      sin(x) = - sqrt(1-sin^2(x))
      sin^2(x) = 1 - sin^2(x)
      sin^2(x) = 1/2
      sin(x) = /- 1/sqrt(2)
      Jos x = pii/4 niin sin(pii/4) = 1/sqrt(2) ja cos(pii/4) = 1/sqrt(2) joten yhtälö ei toteudu.
      Kun x = - pii/4 on sin(- pii/4) = - 1/sqrt(2) = - cos(pii/4) ja yhtälö toteutuu.
      Sini- ja kosinifunktioiden jakso on 2 pii joten
      x = - pii/4 n 2 pii missä n on kokonaisluku (pos., neg. tai 0).

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Muista, että välillä (π/2, 3π/2) ja vastaavilla

        cos(x) = -sqrt(1-sin^2(x)).

        Tässä havainnollistus: https://www.desmos.com/calculator/j858hhtxw1

        Vastaukseksi tulee x = -π/4 nπ, n∈ℤ.

        Olet oikeassa.


    • Anonyymi

      Tässä olisi vielä yksi ratkaisu.
      Tutkitaan siis milloin sin(x) cos(x)=0.
      Kirjoita x = x π/4 - π/4 ja käytä summakaavaa, jolloin saat että

      sin(x) cos(x)
      = cos(x π/4)sin(-π/4) sin(x π/4)cos(-π/4) cos(x π/4)cos(-π/4) - sin(x π/4)sin(-π/4)
      = 2/sqrt(2) sin(x π/4)

      Tämä on nolla, kun x = -π/4 nπ, missä n on kokonaisluku.

    • Anonyymi

      Sini- ja kosinikäppyrät ovat täysin identtisiä. Kosini on 90 astetta edellä.

      cos x = sin(pi/2 x). Sijoitetaan tämä annettuun yhtälöön:

      sin x = -sin(pi/2 x)

      x = -pi/2 - x. => x = -pi/4. Toistuu pi:n välein..

      • Anonyymi

        Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.


      • Anonyymi

        Eikä ole. Sini on 90 astetta jäljessä.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.

        Kuvan piirtäminen on oikeastaan lunttausta. Helpottaa monien ongelmien ratkaisuja liikaa. Jos kuvan piirtää riittävän tarkasti, siitähän näkyy ratkaisut usein lähes parin numeron tarkkuudella.

        Jos kuvien piirtäminen kiellettäisiin, kaikki peruskoululaiset alkaisivat piirtää niitä salaa ja oppisivat ihan liikaa. Opettajia ei enää edes tarvittaisi. Huono juttu.


    • Anonyymi

      Mitäs tämmöiset?
      a) Kulmaan lisättäessä 0,5, sen tangentti kolminkertaistuu. Ratkaise kulma.
      b) Kulmaan lisättäessä 0,3, sen sini kaksinkertaistuu. Ratkaise kulma.
      Vastauksissa vaaditaan kolmen desimaalin tarkkuuta.

      Ovatko nämä yhtälöt oikeita:
      a) tan(x 0,5) = 3 tan x
      b) sin(x 0,3) = 2 sin x
      ?

      • Anonyymi

        Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.


      • Anonyymi
        Anonyymi kirjoitti:

        Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.

        Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.


      • Anonyymi
        Anonyymi kirjoitti:

        Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.

        a) tan(x 0,5) = 3 tan x
        (tan(⁡x) tan(⁡0,5))/(1-tan⁡(x) tan⁡(0,5))=3 tan x

        b) sin(x 0,3) = 2 sin x
        sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x

        Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan?


      • Anonyymi
        Anonyymi kirjoitti:

        a) tan(x 0,5) = 3 tan x
        (tan(⁡x) tan(⁡0,5))/(1-tan⁡(x) tan⁡(0,5))=3 tan x

        b) sin(x 0,3) = 2 sin x
        sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x

        Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan?

        Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.


      • Anonyymi
        Anonyymi kirjoitti:

        Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.

        b) sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x, jaetaan cos(x):llä:
        tan(x)*cos(0,3) sin(0,3) = 2*tan(x)
        (2-cos(0,3))*tan(x) = sin(0,3)
        tan(x) = sin(0,3)/(2-cos(0,3)) = 0,283
        x = arctan(0,283) = 0,276


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Trump muka öljyn takia Venezuelaan? Pelkää mustamaalausta

      Kertokaapa mistä tuollainen uutisankka on saanut alkunsta? Näyttäkääpä ne alkuperäiset lähteet, minä en löytänyt mitään
      Maailman menoa
      228
      19245
    2. Kun Arman Alizad puolusti hiihtäjä Vilma Nissilää sanomalla

      "älä välitä sekopäistä Vilma", ja kun siitä kerrottiin täällä, niin sekopäinen mukasuvaitsevainen teki siitä valituksen
      Maailman menoa
      96
      4164
    3. Lataus pakkaskelissä

      En olisi koskaan ostanut sähköautoa jos olisin tajunnut että ne eivät lataa pakkasissa suurteholatauksella vaan istut tu
      Hybridi- ja sähköautot
      73
      2643
    4. Kun väestö ikääntyy ja veronmaksajat vähenee, mitä sitten vasemmistolaiset?

      Maahanmuutto ei vaan ole ratkaisu väestön ikääntymiseen. Maahanmuutto lykkää ja hidastaa väestön ikääntymistä ja työv
      Maailman menoa
      48
      2153
    5. Temutatko ?

      Ostatko kiinalaisista verkkokaupoista halpaa tavaraa tai vaatteita ja miksi? Siksi että on kiva ostaa kun halvalla saa?
      60 plus
      190
      1785
    6. Martinalta vahva viesti

      "Suuret unelmat venyttävät sinua, pelottavat vähän ja vievät mukavuusalueen ulkopuolelle. Juuri siellä kasvu tapahtuu. J
      Kotimaiset julkkisjuorut
      289
      1622
    7. Miksei Trump ole kiinnostunut Suomen valloittamisesta?

      Täällähän on enemmän turvetta kuin Norjalla öljyä. Eikö Ttump ole turvenuija?
      Maailman menoa
      73
      1561
    8. Jos mies olet oikeasti...?

      Kiinnostunut... Pyydä mut kunnolla treffeille ja laita itsesi likoon. En voi antaa sydäntä jos sinä olet epävarma ja eh
      Ikävä
      135
      1540
    9. Akateemikko Martti Koskenniemi vertaa Trumpia Putiniin

      "-Suomalaisena on syytä olla huolissaan siitä, että Yhdysvallat näin vahvistaa 1800-luvun alkupuolella julistamansa etup
      Maailman menoa
      168
      1494
    10. Esko Eerikäinen paljastaa järkyttävän muiston lapsuudesta - Isä löytyi alastomana slummista

      Esko Eerikäisen tausta on monikulttuurinen, hän muutti vain 10-vuotiaana yksin kotoaan Kolumbiasta isovanhempiensa luo S
      Suomalaiset julkkikset
      14
      1384
    Aihe