Antakaa apua !!! Olen yrittänyt kaikkeni (oikeesti)
Kuinka tämä ratkaistaan:
sin x = - cos x
KIITOS kaikille apua antaneille :)
Trigonometriset funktiot
21
127
Vastaukset
- Anonyymi
Mitä on tangentti?
- Anonyymi
Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.
- Anonyymi
Anonyymi kirjoitti:
Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.
Veikkaan, että sin(pi/4) antaa saman tuloksen kuin - cos (pi/4).
- Anonyymi
x = -pi/4
- Anonyymi
Perustelu:
e^ix = cos(x) i sin(x)
e^-ix = cos(x)-i sin(x)
i=e^i pi/2
sin(x) = (1/2i) (e^ix - e^-ix )
cos(x) = (1/2) (e^ix e^-ix )
(1/2i) (e^ix - e^-ix ) = -(1/2) (e^ix e^-ix ) # sin(x) = -cos(x)
(1/i) (e^ix - e^-ix ) = -(e^ix e^-ix )
e^i(x-pi/2) - e^-i(x-pi/2) = -e^ix - e^-ix
e^-ipi/2 (e^ix - e^-ix ) = -(e^ix e^-ix )
(e^-ipi/2 1) e^ix = (e^-ipi/2 -1)e^-ix
ln (e^-ipi/2 1) ix = ln (e^-ipi/2 -1) -ix
2ix = ln (e^-ipi/2 -1) - ln (e^-ipi/2 1) = ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
x = (1/2i ) ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
x = (1/2i ) ln( 1/i -1)/ ( 1/i 1 ) )
x = (1/2i ) ln( 1 -i)/ ( 1 i ) )
x = (1/2i ) ln( 1 -i)(1 i)/ ( 1 i )^2 )
x = (1/2i ) ln( 2)/ ( 2i ) ) = (1/2i ) ln( 1/ i ) = - (1/2i ) ln(i) = - (1/2i ) i pi/2 = -pi/4
- Anonyymi
Käytä apuna yksikköympyrää. Kutsutaan tehtävän x:ää nyt t:ksi niin se ei sekoitu koordinaatteihin sillä yksikköympyrällä x=cos t ja y=sin t. Nyt tehtävän yhtälö kuuluu että y = -x. Eli ratkaisut ovat yksikköympyrän ja suoran y = -x leikkauspisteet (tai siis katsot sen kulman siitä). Nehän ovat luoteessa ja kaakossa eli kulmat 3π/4 ja -π/4.
- Anonyymi
x = (4 *π * n) / 4, n∈ℤ
- Anonyymi
cos(x) = sqrt(1-sin^2(x))
sin(x) = - sqrt(1-sin^2(x))
sin^2(x) = 1 - sin^2(x)
sin^2(x) = 1/2
sin(x) = /- 1/sqrt(2)
Jos x = pii/4 niin sin(pii/4) = 1/sqrt(2) ja cos(pii/4) = 1/sqrt(2) joten yhtälö ei toteudu.
Kun x = - pii/4 on sin(- pii/4) = - 1/sqrt(2) = - cos(pii/4) ja yhtälö toteutuu.
Sini- ja kosinifunktioiden jakso on 2 pii joten
x = - pii/4 n 2 pii missä n on kokonaisluku (pos., neg. tai 0).- Anonyymi
Muista, että välillä (π/2, 3π/2) ja vastaavilla
cos(x) = -sqrt(1-sin^2(x)).
Tässä havainnollistus: https://www.desmos.com/calculator/j858hhtxw1
Vastaukseksi tulee x = -π/4 nπ, n∈ℤ. - Anonyymi
Anonyymi kirjoitti:
Muista, että välillä (π/2, 3π/2) ja vastaavilla
cos(x) = -sqrt(1-sin^2(x)).
Tässä havainnollistus: https://www.desmos.com/calculator/j858hhtxw1
Vastaukseksi tulee x = -π/4 nπ, n∈ℤ.Olet oikeassa.
- Anonyymi
Tässä olisi vielä yksi ratkaisu.
Tutkitaan siis milloin sin(x) cos(x)=0.
Kirjoita x = x π/4 - π/4 ja käytä summakaavaa, jolloin saat että
sin(x) cos(x)
= cos(x π/4)sin(-π/4) sin(x π/4)cos(-π/4) cos(x π/4)cos(-π/4) - sin(x π/4)sin(-π/4)
= 2/sqrt(2) sin(x π/4)
Tämä on nolla, kun x = -π/4 nπ, missä n on kokonaisluku. - Anonyymi
Sini- ja kosinikäppyrät ovat täysin identtisiä. Kosini on 90 astetta edellä.
cos x = sin(pi/2 x). Sijoitetaan tämä annettuun yhtälöön:
sin x = -sin(pi/2 x)
x = -pi/2 - x. => x = -pi/4. Toistuu pi:n välein..- Anonyymi
Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.
- Anonyymi
Eikä ole. Sini on 90 astetta jäljessä.
- Anonyymi
Anonyymi kirjoitti:
Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.
Kuvan piirtäminen on oikeastaan lunttausta. Helpottaa monien ongelmien ratkaisuja liikaa. Jos kuvan piirtää riittävän tarkasti, siitähän näkyy ratkaisut usein lähes parin numeron tarkkuudella.
Jos kuvien piirtäminen kiellettäisiin, kaikki peruskoululaiset alkaisivat piirtää niitä salaa ja oppisivat ihan liikaa. Opettajia ei enää edes tarvittaisi. Huono juttu.
- Anonyymi
Mitäs tämmöiset?
a) Kulmaan lisättäessä 0,5, sen tangentti kolminkertaistuu. Ratkaise kulma.
b) Kulmaan lisättäessä 0,3, sen sini kaksinkertaistuu. Ratkaise kulma.
Vastauksissa vaaditaan kolmen desimaalin tarkkuuta.
Ovatko nämä yhtälöt oikeita:
a) tan(x 0,5) = 3 tan x
b) sin(x 0,3) = 2 sin x
?- Anonyymi
Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.
- Anonyymi
Anonyymi kirjoitti:
Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.
Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.
- Anonyymi
Anonyymi kirjoitti:
Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.
a) tan(x 0,5) = 3 tan x
(tan(x) tan(0,5))/(1-tan(x) tan(0,5))=3 tan x
b) sin(x 0,3) = 2 sin x
sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x
Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan? - Anonyymi
Anonyymi kirjoitti:
a) tan(x 0,5) = 3 tan x
(tan(x) tan(0,5))/(1-tan(x) tan(0,5))=3 tan x
b) sin(x 0,3) = 2 sin x
sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x
Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan?Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.
- Anonyymi
Anonyymi kirjoitti:
Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.
b) sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x, jaetaan cos(x):llä:
tan(x)*cos(0,3) sin(0,3) = 2*tan(x)
(2-cos(0,3))*tan(x) = sin(0,3)
tan(x) = sin(0,3)/(2-cos(0,3)) = 0,283
x = arctan(0,283) = 0,276
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 1773611
Tekisi niin mieli laittaa sulle viestiä
En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m851608Miksi ihmeessä?
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek261327- 1581242
Pitääkö penkeillä hypätä Martina?
Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit1941023Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut161003- 35991
Kuinka kauan
Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?83942Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä
Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk97854- 62775