Trigonometriset funktiot

Anonyymi

Antakaa apua !!! Olen yrittänyt kaikkeni (oikeesti)

Kuinka tämä ratkaistaan:

sin x = - cos x

KIITOS kaikille apua antaneille :)

21

204

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Mitä on tangentti?

      • Anonyymi

        Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.


      • Anonyymi
        Anonyymi kirjoitti:

        Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.

        Veikkaan, että sin(pi/4) antaa saman tuloksen kuin - cos (pi/4).


    • Anonyymi

      x = -pi/4

      • Anonyymi

        Perustelu:
        e^ix = cos(x) i sin(x)
        e^-ix = cos(x)-i sin(x)
        i=e^i pi/2

        sin(x) = (1/2i) (e^ix - e^-ix )
        cos(x) = (1/2) (e^ix e^-ix )

        (1/2i) (e^ix - e^-ix ) = -(1/2) (e^ix e^-ix ) # sin(x) = -cos(x)
        (1/i) (e^ix - e^-ix ) = -(e^ix e^-ix )

        e^i(x-pi/2) - e^-i(x-pi/2) = -e^ix - e^-ix
        e^-ipi/2 (e^ix - e^-ix ) = -(e^ix e^-ix )
        (e^-ipi/2 1) e^ix = (e^-ipi/2 -1)e^-ix
        ln (e^-ipi/2 1) ix = ln (e^-ipi/2 -1) -ix
        2ix = ln (e^-ipi/2 -1) - ln (e^-ipi/2 1) = ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
        x = (1/2i ) ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
        x = (1/2i ) ln( 1/i -1)/ ( 1/i 1 ) )
        x = (1/2i ) ln( 1 -i)/ ( 1 i ) )
        x = (1/2i ) ln( 1 -i)(1 i)/ ( 1 i )^2 )
        x = (1/2i ) ln( 2)/ ( 2i ) ) = (1/2i ) ln( 1/ i ) = - (1/2i ) ln(i) = - (1/2i ) i pi/2 = -pi/4


    • Anonyymi

      Käytä apuna yksikköympyrää. Kutsutaan tehtävän x:ää nyt t:ksi niin se ei sekoitu koordinaatteihin sillä yksikköympyrällä x=cos t ja y=sin t. Nyt tehtävän yhtälö kuuluu että y = -x. Eli ratkaisut ovat yksikköympyrän ja suoran y = -x leikkauspisteet (tai siis katsot sen kulman siitä). Nehän ovat luoteessa ja kaakossa eli kulmat 3π/4 ja -π/4.

    • Anonyymi

      x = (4 *π * n) / 4, n∈ℤ

    • Anonyymi

      cos(x) = sqrt(1-sin^2(x))
      sin(x) = - sqrt(1-sin^2(x))
      sin^2(x) = 1 - sin^2(x)
      sin^2(x) = 1/2
      sin(x) = /- 1/sqrt(2)
      Jos x = pii/4 niin sin(pii/4) = 1/sqrt(2) ja cos(pii/4) = 1/sqrt(2) joten yhtälö ei toteudu.
      Kun x = - pii/4 on sin(- pii/4) = - 1/sqrt(2) = - cos(pii/4) ja yhtälö toteutuu.
      Sini- ja kosinifunktioiden jakso on 2 pii joten
      x = - pii/4 n 2 pii missä n on kokonaisluku (pos., neg. tai 0).

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Muista, että välillä (π/2, 3π/2) ja vastaavilla

        cos(x) = -sqrt(1-sin^2(x)).

        Tässä havainnollistus: https://www.desmos.com/calculator/j858hhtxw1

        Vastaukseksi tulee x = -π/4 nπ, n∈ℤ.

        Olet oikeassa.


    • Anonyymi

      Tässä olisi vielä yksi ratkaisu.
      Tutkitaan siis milloin sin(x) cos(x)=0.
      Kirjoita x = x π/4 - π/4 ja käytä summakaavaa, jolloin saat että

      sin(x) cos(x)
      = cos(x π/4)sin(-π/4) sin(x π/4)cos(-π/4) cos(x π/4)cos(-π/4) - sin(x π/4)sin(-π/4)
      = 2/sqrt(2) sin(x π/4)

      Tämä on nolla, kun x = -π/4 nπ, missä n on kokonaisluku.

    • Anonyymi

      Sini- ja kosinikäppyrät ovat täysin identtisiä. Kosini on 90 astetta edellä.

      cos x = sin(pi/2 x). Sijoitetaan tämä annettuun yhtälöön:

      sin x = -sin(pi/2 x)

      x = -pi/2 - x. => x = -pi/4. Toistuu pi:n välein..

      • Anonyymi

        Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.


      • Anonyymi

        Eikä ole. Sini on 90 astetta jäljessä.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.

        Kuvan piirtäminen on oikeastaan lunttausta. Helpottaa monien ongelmien ratkaisuja liikaa. Jos kuvan piirtää riittävän tarkasti, siitähän näkyy ratkaisut usein lähes parin numeron tarkkuudella.

        Jos kuvien piirtäminen kiellettäisiin, kaikki peruskoululaiset alkaisivat piirtää niitä salaa ja oppisivat ihan liikaa. Opettajia ei enää edes tarvittaisi. Huono juttu.


    • Anonyymi

      Mitäs tämmöiset?
      a) Kulmaan lisättäessä 0,5, sen tangentti kolminkertaistuu. Ratkaise kulma.
      b) Kulmaan lisättäessä 0,3, sen sini kaksinkertaistuu. Ratkaise kulma.
      Vastauksissa vaaditaan kolmen desimaalin tarkkuuta.

      Ovatko nämä yhtälöt oikeita:
      a) tan(x 0,5) = 3 tan x
      b) sin(x 0,3) = 2 sin x
      ?

      • Anonyymi

        Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.


      • Anonyymi
        Anonyymi kirjoitti:

        Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.

        Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.


      • Anonyymi
        Anonyymi kirjoitti:

        Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.

        a) tan(x 0,5) = 3 tan x
        (tan(⁡x) tan(⁡0,5))/(1-tan⁡(x) tan⁡(0,5))=3 tan x

        b) sin(x 0,3) = 2 sin x
        sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x

        Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan?


      • Anonyymi
        Anonyymi kirjoitti:

        a) tan(x 0,5) = 3 tan x
        (tan(⁡x) tan(⁡0,5))/(1-tan⁡(x) tan⁡(0,5))=3 tan x

        b) sin(x 0,3) = 2 sin x
        sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x

        Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan?

        Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.


      • Anonyymi
        Anonyymi kirjoitti:

        Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.

        b) sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x, jaetaan cos(x):llä:
        tan(x)*cos(0,3) sin(0,3) = 2*tan(x)
        (2-cos(0,3))*tan(x) = sin(0,3)
        tan(x) = sin(0,3)/(2-cos(0,3)) = 0,283
        x = arctan(0,283) = 0,276


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Sannan kirja USA:n bestseller!

      "Congratulations to Sanna Marin's HOPE IN ACTION, officially a USA TODAY bestseller!" Kertoo Scribner. Mitäs persut tä
      Maailman menoa
      147
      11322
    2. Oikeistolainen luki Med mod att leda : en biografi

      ...ei tykänny Sanna Marinista
      Maailman menoa
      27
      8063
    3. Metsäalan rikolliset

      Jokohan alkaa vähitellen kaatua kulissit näillä ihmiskauppaa harjoittavilla firmoilla.
      Sotkamo
      56
      5840
    4. Ruotsalaistoimittaja: "Sanna Marinin saunominen saa minut häpeämään"

      Sanna Marinin kirja saa täyslaidallisen ruotsalaislehti Expressenissä perjantaina julkaistussa kolumnissa.....voi itku..
      Maailman menoa
      159
      4522
    5. Suomen kaksikielisyys - täyttä huuhaata

      Eivätkö muuten yksilöt pysty arvioimaan mitä kieliä he tarvitsevat? Ulkomaalaiselle osaajalle riittää Suomessa kielitai
      Maailman menoa
      31
      4306
    6. Työeläkeloisinta 27,5 mrd. per vuosi

      Tuo kaikki on pois palkansaajien ostovoimasta. Ja sitten puupäät ihmettelee miksei Suomen talous kasva. No eihän se kas
      Maailman menoa
      82
      4160
    7. Missä vaiheessa

      Päätit luovuttaa suhteeni?
      Ikävä
      84
      3448
    8. Juuri muiston ne

      Rakastuneet katseesi. Huh
      Ikävä
      80
      3206
    9. Miten paljon

      Olet halunnut mun kanssa?
      Ikävä
      47
      1689
    10. Hyvää yötä

      Joka päivä ajatuksissani, aarre. ❤️
      Ikävä
      39
      1602
    Aihe