Antakaa apua !!! Olen yrittänyt kaikkeni (oikeesti)
Kuinka tämä ratkaistaan:
sin x = - cos x
KIITOS kaikille apua antaneille :)
Trigonometriset funktiot
21
228
Vastaukset
- Anonyymi
Mitä on tangentti?
- Anonyymi
Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.
- Anonyymi
Anonyymi kirjoitti:
Sitä ensin yritin, että jaan yhtälön :cos(x), jolloin se tulisi muotoon (sinx)/(cosx)=-1. Tämän saisi sitten muotoon tanx=-1. Ongelmana on vain se, että laskin antaa tälle eri vastauksen kuin tuolle alkuperäiselle sinx=-cosx yhtälölle. En siksi jatkanut pidemmälle.
Veikkaan, että sin(pi/4) antaa saman tuloksen kuin - cos (pi/4).
- Anonyymi
x = -pi/4
- Anonyymi
Perustelu:
e^ix = cos(x) i sin(x)
e^-ix = cos(x)-i sin(x)
i=e^i pi/2
sin(x) = (1/2i) (e^ix - e^-ix )
cos(x) = (1/2) (e^ix e^-ix )
(1/2i) (e^ix - e^-ix ) = -(1/2) (e^ix e^-ix ) # sin(x) = -cos(x)
(1/i) (e^ix - e^-ix ) = -(e^ix e^-ix )
e^i(x-pi/2) - e^-i(x-pi/2) = -e^ix - e^-ix
e^-ipi/2 (e^ix - e^-ix ) = -(e^ix e^-ix )
(e^-ipi/2 1) e^ix = (e^-ipi/2 -1)e^-ix
ln (e^-ipi/2 1) ix = ln (e^-ipi/2 -1) -ix
2ix = ln (e^-ipi/2 -1) - ln (e^-ipi/2 1) = ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
x = (1/2i ) ln( (e^-ipi/2 -1)/ ( e^-ipi/2 1 ) )
x = (1/2i ) ln( 1/i -1)/ ( 1/i 1 ) )
x = (1/2i ) ln( 1 -i)/ ( 1 i ) )
x = (1/2i ) ln( 1 -i)(1 i)/ ( 1 i )^2 )
x = (1/2i ) ln( 2)/ ( 2i ) ) = (1/2i ) ln( 1/ i ) = - (1/2i ) ln(i) = - (1/2i ) i pi/2 = -pi/4
- Anonyymi
Käytä apuna yksikköympyrää. Kutsutaan tehtävän x:ää nyt t:ksi niin se ei sekoitu koordinaatteihin sillä yksikköympyrällä x=cos t ja y=sin t. Nyt tehtävän yhtälö kuuluu että y = -x. Eli ratkaisut ovat yksikköympyrän ja suoran y = -x leikkauspisteet (tai siis katsot sen kulman siitä). Nehän ovat luoteessa ja kaakossa eli kulmat 3π/4 ja -π/4.
- Anonyymi
x = (4 *π * n) / 4, n∈ℤ
- Anonyymi
cos(x) = sqrt(1-sin^2(x))
sin(x) = - sqrt(1-sin^2(x))
sin^2(x) = 1 - sin^2(x)
sin^2(x) = 1/2
sin(x) = /- 1/sqrt(2)
Jos x = pii/4 niin sin(pii/4) = 1/sqrt(2) ja cos(pii/4) = 1/sqrt(2) joten yhtälö ei toteudu.
Kun x = - pii/4 on sin(- pii/4) = - 1/sqrt(2) = - cos(pii/4) ja yhtälö toteutuu.
Sini- ja kosinifunktioiden jakso on 2 pii joten
x = - pii/4 n 2 pii missä n on kokonaisluku (pos., neg. tai 0).- Anonyymi
Muista, että välillä (π/2, 3π/2) ja vastaavilla
cos(x) = -sqrt(1-sin^2(x)).
Tässä havainnollistus: https://www.desmos.com/calculator/j858hhtxw1
Vastaukseksi tulee x = -π/4 nπ, n∈ℤ. - Anonyymi
Anonyymi kirjoitti:
Muista, että välillä (π/2, 3π/2) ja vastaavilla
cos(x) = -sqrt(1-sin^2(x)).
Tässä havainnollistus: https://www.desmos.com/calculator/j858hhtxw1
Vastaukseksi tulee x = -π/4 nπ, n∈ℤ.Olet oikeassa.
- Anonyymi
Tässä olisi vielä yksi ratkaisu.
Tutkitaan siis milloin sin(x) cos(x)=0.
Kirjoita x = x π/4 - π/4 ja käytä summakaavaa, jolloin saat että
sin(x) cos(x)
= cos(x π/4)sin(-π/4) sin(x π/4)cos(-π/4) cos(x π/4)cos(-π/4) - sin(x π/4)sin(-π/4)
= 2/sqrt(2) sin(x π/4)
Tämä on nolla, kun x = -π/4 nπ, missä n on kokonaisluku. - Anonyymi
Sini- ja kosinikäppyrät ovat täysin identtisiä. Kosini on 90 astetta edellä.
cos x = sin(pi/2 x). Sijoitetaan tämä annettuun yhtälöön:
sin x = -sin(pi/2 x)
x = -pi/2 - x. => x = -pi/4. Toistuu pi:n välein..- Anonyymi
Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.
- Anonyymi
Eikä ole. Sini on 90 astetta jäljessä.
- Anonyymi
Anonyymi kirjoitti:
Jos aloittaja olisi vaivautunut piirtämään kuvan ihan vaan käsin A4:lle, kaikki olisi varmasti selvinnyt heti. Jos ei piirrä kuvaa, miinusmerkin kanssa tulee helposti virhe.
Kuvan piirtäminen on oikeastaan lunttausta. Helpottaa monien ongelmien ratkaisuja liikaa. Jos kuvan piirtää riittävän tarkasti, siitähän näkyy ratkaisut usein lähes parin numeron tarkkuudella.
Jos kuvien piirtäminen kiellettäisiin, kaikki peruskoululaiset alkaisivat piirtää niitä salaa ja oppisivat ihan liikaa. Opettajia ei enää edes tarvittaisi. Huono juttu.
- Anonyymi
Mitäs tämmöiset?
a) Kulmaan lisättäessä 0,5, sen tangentti kolminkertaistuu. Ratkaise kulma.
b) Kulmaan lisättäessä 0,3, sen sini kaksinkertaistuu. Ratkaise kulma.
Vastauksissa vaaditaan kolmen desimaalin tarkkuuta.
Ovatko nämä yhtälöt oikeita:
a) tan(x 0,5) = 3 tan x
b) sin(x 0,3) = 2 sin x
?- Anonyymi
Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.
- Anonyymi
Anonyymi kirjoitti:
Ovat. Trigonometristen yhteenlaskukaavoilla. Ekasta taitaa tulla 2. asteen yhtälö tanx suhteen. Toisesta kätevintä ratkaista tanx.
Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.
- Anonyymi
Anonyymi kirjoitti:
Kiitos! Summakaavoilla lähdinkin jo jatkamaan. Hyvä, kun tuli varmistus, että oikea suunta.
a) tan(x 0,5) = 3 tan x
(tan(x) tan(0,5))/(1-tan(x) tan(0,5))=3 tan x
b) sin(x 0,3) = 2 sin x
sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x
Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan? - Anonyymi
Anonyymi kirjoitti:
a) tan(x 0,5) = 3 tan x
(tan(x) tan(0,5))/(1-tan(x) tan(0,5))=3 tan x
b) sin(x 0,3) = 2 sin x
sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x
Tämmöiseen vaiheeseen saan. Ekasta kokeilin sijoittaa tan(x)=a, mutta aika sekavaksi meni. Pitäisikö nämä olla helppoja vai olenko vain huono laskemaan?Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.
- Anonyymi
Anonyymi kirjoitti:
Nyt sain oikeat vastaukset. A varmaan kokonaan oikein, mutta b:stä vielä puuttuu välivaiheita.
b) sin(x)*cos(0,3) cos(x)*sin(0,3)=2 sin x, jaetaan cos(x):llä:
tan(x)*cos(0,3) sin(0,3) = 2*tan(x)
(2-cos(0,3))*tan(x) = sin(0,3)
tan(x) = sin(0,3)/(2-cos(0,3)) = 0,283
x = arctan(0,283) = 0,276
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Trump muka öljyn takia Venezuelaan? Pelkää mustamaalausta
Kertokaapa mistä tuollainen uutisankka on saanut alkunsta? Näyttäkääpä ne alkuperäiset lähteet, minä en löytänyt mitään22819245Kun Arman Alizad puolusti hiihtäjä Vilma Nissilää sanomalla
"älä välitä sekopäistä Vilma", ja kun siitä kerrottiin täällä, niin sekopäinen mukasuvaitsevainen teki siitä valituksen964164Lataus pakkaskelissä
En olisi koskaan ostanut sähköautoa jos olisin tajunnut että ne eivät lataa pakkasissa suurteholatauksella vaan istut tu732643Kun väestö ikääntyy ja veronmaksajat vähenee, mitä sitten vasemmistolaiset?
Maahanmuutto ei vaan ole ratkaisu väestön ikääntymiseen. Maahanmuutto lykkää ja hidastaa väestön ikääntymistä ja työv482153Temutatko ?
Ostatko kiinalaisista verkkokaupoista halpaa tavaraa tai vaatteita ja miksi? Siksi että on kiva ostaa kun halvalla saa?1901785Martinalta vahva viesti
"Suuret unelmat venyttävät sinua, pelottavat vähän ja vievät mukavuusalueen ulkopuolelle. Juuri siellä kasvu tapahtuu. J2891622Miksei Trump ole kiinnostunut Suomen valloittamisesta?
Täällähän on enemmän turvetta kuin Norjalla öljyä. Eikö Ttump ole turvenuija?731561Jos mies olet oikeasti...?
Kiinnostunut... Pyydä mut kunnolla treffeille ja laita itsesi likoon. En voi antaa sydäntä jos sinä olet epävarma ja eh1351540Akateemikko Martti Koskenniemi vertaa Trumpia Putiniin
"-Suomalaisena on syytä olla huolissaan siitä, että Yhdysvallat näin vahvistaa 1800-luvun alkupuolella julistamansa etup1681494Esko Eerikäinen paljastaa järkyttävän muiston lapsuudesta - Isä löytyi alastomana slummista
Esko Eerikäisen tausta on monikulttuurinen, hän muutti vain 10-vuotiaana yksin kotoaan Kolumbiasta isovanhempiensa luo S141384