Laske määrätty integraali x: 0->2 lausekkeesta sqrt(1-(1-x)^2).
Neliöjuurilausekkeen integraali
9
89
Vastaukset
- Anonyymi
(1-x)=sin(t), sijoituksella varmaan menee...
Mutta jos vähän funtsaa ensin sitä lauseketta, niin senhän saa muutettua muotoon: y^2 x^2-2x=0, ja edelleen:
(y-0)^2 (x-1)^2=1 , ja tuo on 1-säteinen puoliympyrä välillä 1...2, ja sen ala on tietysti pi/2.
Sillä sijoitusmenetelmällä pitäisi tuo nyt saada...- Anonyymi
korj. puoliympyrä välillä 0...2
- Anonyymi
Se ei menekään tuolla sijoituksella, tai menee mutta tulee -pi/2, joten sitten kokeilu sijoituksella : x-1=sin(t)...(kokeilen sitä vielä itsekin)
- Anonyymi
Tällä jälkimmäisellä kyllä menee, mutta hankala vähän on...
- Anonyymi
Tuolla sijoituksella uusiksi rajoiksi t:lle, laitoin: alaraja -pi/2......yläraja pi/2
- Anonyymi
Anonyymi kirjoitti:
Tuolla sijoituksella uusiksi rajoiksi t:lle, laitoin: alaraja -pi/2......yläraja pi/2
Tuossa ei taida olla kovinkaan suuria ongelmia, jos käyttää sijoitusta (1-x)=cos(u), jolloin integroitavaksi funktioksi tulee : sin^2(u), ja uusiksi rajoiksi : 0=>pi.
Tuossa integroinnissa voi käyttää osittaisintegrointia , tai cos(2u)=cos^2(u)-sin^2(u) kaavaa(helpompi).
(ps. Käytän tuossa muuttujaa u, koska muuttuja t viittaisi origokeskeiseen yksikköympyrään, mutta nythän ei sellaisessa olla.)
- Anonyymi
sin(t) = 1 - x.dx = - cos(t) dt
Int(pii/2,- pii/2) ( - sqrt(1-sin^2(t)) cos(t) dt) = (- pii/2, pii/2) cos^2(t) dt =
Sij(- pii/2, pii/2) (1/2 (sin(x) cos(x) x)) = pii/2- Anonyymi
Näytän nyt vielä miten tuo funktion cos^2(x) integraali saadaan.
Merkitään t = cos(x). dt = - sin(x) dx joten dx = - dt/sin(x) = - dt/sqrt(1-t^2)
Int (cos^2(x) dx) = - Int(t^2/sqrt(1-t^2) dt) = Int(t d(sqrt(1-t^2))dt) =
t sqrt(1-t^2) - Int((sqrt(1-t^2) dt) = cos(x) sin(x) Int(sqrt(1 -cos^2(x)) sin(x)) dx) =
sin(x) cos(x) Int(sin^2(x) dx) = sin(x) cos(x) Int((1-cos^2(x))dx) = sin(x) cos(x) x -Int(cos^2(x))dx) joten
2 Int(cos^2(x) dx) = x sin(x) cos(x) ja
Int(cos^2(x) dx) = 1/2(x sin(x) cos(x) ) = 1/2 (x sin(2x) / 2)
Tässä on käytetty integroimisvakion arvoa C = 0. Määrättyä integraalia laskettaessahan C:llä on sama arvo integroinnin ylä- ja alarajalla joten sen vaikutus häviää määrätyssä integraalissa. - Anonyymi
Anonyymi kirjoitti:
Näytän nyt vielä miten tuo funktion cos^2(x) integraali saadaan.
Merkitään t = cos(x). dt = - sin(x) dx joten dx = - dt/sin(x) = - dt/sqrt(1-t^2)
Int (cos^2(x) dx) = - Int(t^2/sqrt(1-t^2) dt) = Int(t d(sqrt(1-t^2))dt) =
t sqrt(1-t^2) - Int((sqrt(1-t^2) dt) = cos(x) sin(x) Int(sqrt(1 -cos^2(x)) sin(x)) dx) =
sin(x) cos(x) Int(sin^2(x) dx) = sin(x) cos(x) Int((1-cos^2(x))dx) = sin(x) cos(x) x -Int(cos^2(x))dx) joten
2 Int(cos^2(x) dx) = x sin(x) cos(x) ja
Int(cos^2(x) dx) = 1/2(x sin(x) cos(x) ) = 1/2 (x sin(2x) / 2)
Tässä on käytetty integroimisvakion arvoa C = 0. Määrättyä integraalia laskettaessahan C:llä on sama arvo integroinnin ylä- ja alarajalla joten sen vaikutus häviää määrätyssä integraalissa.Laskin tuon turhan monimutkaisesti. Näin se käy:
Int (cos^2(x) dx ) = Int (cos(x) dsin(x)) = cos(x ) sin(x) Int(sin^2(x) dx) = sin(x) cos(x)
Int((1 - cos^2(x))dx) = sin(x) cos(x) x - Int(cos^2(x) dx) joten
Int(cos ^2(x) dx) = 1/2 ( x sin(x) cos(x))
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 1773621
Tekisi niin mieli laittaa sulle viestiä
En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m851608Miksi ihmeessä?
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek261337- 1581252
Pitääkö penkeillä hypätä Martina?
Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit1941023Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut161003- 351001
Kuinka kauan
Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?84951Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä
Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk97864- 62775