Ii potenssiin ii

Anonyymi

Määritä i^i arvo.

13

251

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Koska kompleksinen eksponenttifunktio on jaksollinen, i^i:llä on äärettömän monta arvoa. ”Pääsarjan” mukainen arvo sille on e^(-pii/2). Myös kaikki muut arvot ovat reaalisia.

      • Anonyymi

        Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
        Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä?


      • Anonyymi
        Anonyymi kirjoitti:

        Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
        Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä?

        i ei ole lukumäärä, joten tuo ajatelma ei päde.

        Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1.


      • Anonyymi
        Anonyymi kirjoitti:

        i ei ole lukumäärä, joten tuo ajatelma ei päde.

        Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1.

        Ja myös millä tahansa reaalisella. Iihän on e^(i*(pi/2 k*2pi)), joten i^t reaaliluvulle t on

        e^(i*(t*pi/2 t*k*2pi))

        Tämä säilyy yksikköympyrällä, koska potenssi säilyy puhtaasti imaginäärisenä. Mutta siitä saattaa tulla moniarvoinen, koska t*k ei välttämättä ole kokonaisluku kaikilla k. Jos t on rationaaliluku, niin tulee vain äärellisen monta eri arvoa (supistetun muodon nimittäjä). Esim t=1/2, niin neliöjuuria on kaksi.

        Itseisarvon muutos tulee siis potenssin imaginäärisestä komponentista: Jos laitetaan potenssiin t s*i, niin

        e^(-(s*pi/2 s*k*2pi) i*(t*pi/2 t*k*2pi))

        Jos nyt s on nollasta poikkeava, niin tällähän on aina äärettömän monta eri arvoa, itseisarvoltaan mielivaltaisen pieniä ja suuria.


      • Anonyymi

        /- i on yhtälön x^2 1 = 0 ratkaisu. Voidaan myös sanoa, että i = sqrt(-1). Sarjakehitelmällä voidaan sosittaa, että e^(i fii) = cos(fii) i sin(fii). Näin ollen e^(i pii/2) = i.


      • Anonyymi

        Jos olisi aikoinaan vain tyydytty siihen, että yhtälöllä x^2 1 = 0 ei ole ratkaisua, niin asia olisi varmaan jäänyt hiertämään. Niinpä oletettiin, että on joku ratkaisu x = i. Tästä seuraa, että i^2 = -1. Päätelmällä on ollut kauaskantoiset vaikutukset matematiikassa ja sitä kautta fysiikassa ja tekniikassa. Kun mukaan otetan vielä toinen kirjain eli e, niin ollan matematiikan ytimessä.


      • Anonyymi

        Olkoon
        f(x) = a^x
        Millä a:n arvolla pätee
        df(x)/dx = f(x)
        Vastaus on a = e. Tämän voi helposti itsekin johtaa ratkaisemalla tuon yhtälön diskretoimalla. e:n numeerinen arvo on 2,718281828.....


    • Anonyymi

      Helppohan se on pelkkää yhtä kirjainta korottaa itsensä potenssiin. Olkoon se vaikka i tai a. Mutta jos vaikka h pitäisi korottaa potenssiin g. On pikkusen vaikeampaa.

      Entäpä jos f korotetaan potenssiin s ja tämä vielä korotetaan potenssiin r? Meneekö liian vaikeaksi?

      Kuka puhuikaan potenssista? Mulla riittää!

      Vastahan tein lyömättömän ennätyksen kakkosen korottamisessa ja tätäkin suuremman potenssikorotuksen.

      • Anonyymi

        Minä korotan kaikki kirjaimet ja numerot potenssien potensseihin. Suurimmat potenssit lausun minä. Myöskin vaikeimmat. Mulla potenssia riittää.

        i potenssiin i on peruskauraa. Helposti lyön lisää löylyä kiukaalle: i^i^i^i^i^i^iiiiii^iii^i!

        Tällekin löydän arvon. Eniten tykkään kuiteskin suurista potensseista. Mielettömän suurista. Minä lataan kaikista suurimmat potenssit kehään.


    • Anonyymi

      i = e^(i pii/2)
      i ^i = (e^(i pii/2) ^i = e^(i^2 pii/2) = e^(- pii/2) = =,207879576...
      Tämä on transkendenttiluku.

      • Anonyymi

        p.o : ...= 0,207879578...


      • Anonyymi

        Ja tuli vielä sulkumerkkivirhekin. Uudestaan:
        i ^i = (e^(i pii/2)) ^i=e ^(i ^2 pii/2) = e ^(- pii/2) = 0,207879576...


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Takaisin ylös

    Luetuimmat keskustelut

    1. Työsuhdepyörän veroetu poistuu

      Hallituksen veropoliittisen Riihen uutisia: Mitä ilmeisimmin 1.1.2026 alkaen työsuhdepyörän kuukausiveloitus maksetaan
      Pyöräily
      229
      7080
    2. Pakko tulla tänne

      jälleen kertomaan kuinka mahtava ja ihmeellinen sekä parhaalla tavalla hämmentävä nainen olet. En ikinä tule kyllästymää
      Ikävä
      45
      1325
    3. Fuengirola.fi: Danny avautuu yllättäen ex-rakas Erika Vikmanista: "Sanoisin, että hän on..."

      Danny matkasi Aurinkorannikolle Helmi Loukasmäen kanssa. Musiikkineuvoksella on silmää naiskauneudelle ja hänen ex-raka
      Kotimaiset julkkisjuorut
      29
      1158
    4. Yksi kysymys

      Yksi kysymys, minkä kysyisit kaivatultasi. Mikä se olisi?
      Ikävä
      75
      921
    5. Hävettää muuttaa Haapavedelle.

      Joudun töiden vuoksi muuttamaan Haapavedelle, kun työpaikkani siirtyi sinne. Nyt olen joutunut pakkaamaan kamoja toisaal
      Haapavesi
      50
      915
    6. Katseestasi näin

      Silmissäsi syttyi hiljainen tuli, Se ei polttanut, vaan muistutti, että olin ennenkin elänyt sinun rinnallasi, jossain a
      Ikävä
      62
      877
    7. Työhuonevähennys poistuu etätyöntekijöiltä

      Hyvä. Vituttaa muutenkin etätyöntekijät. Ei se tietokoneen naputtelu mitään työtä ole.
      Maailman menoa
      96
      856
    8. Toinen kuva mikä susta on jäänyt on

      tietynlainen saamattomuus ja laiskuus. Sellaineen narsistinen laiskanpuoleisuus. Palvelkaa ja tehkää.
      Ikävä
      38
      821
    9. Tietenkin täällä

      Kunnan kyseenalainen maine kasvaa taas , joku huijannut monen vuoden ajan peltotukia vilpillisin keinoin.
      Suomussalmi
      14
      786
    10. Jäähalli myynnissä!

      Pitihän se arvata kun tuonne se piti rakentaa väkisin.
      Äänekoski
      43
      763
    Aihe