Ii potenssiin ii

Anonyymi

Määritä i^i arvo.

13

377

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Koska kompleksinen eksponenttifunktio on jaksollinen, i^i:llä on äärettömän monta arvoa. ”Pääsarjan” mukainen arvo sille on e^(-pii/2). Myös kaikki muut arvot ovat reaalisia.

      • Anonyymi

        Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
        Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä?


      • Anonyymi
        Anonyymi kirjoitti:

        Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
        Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä?

        i ei ole lukumäärä, joten tuo ajatelma ei päde.

        Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1.


      • Anonyymi
        Anonyymi kirjoitti:

        i ei ole lukumäärä, joten tuo ajatelma ei päde.

        Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1.

        Ja myös millä tahansa reaalisella. Iihän on e^(i*(pi/2 k*2pi)), joten i^t reaaliluvulle t on

        e^(i*(t*pi/2 t*k*2pi))

        Tämä säilyy yksikköympyrällä, koska potenssi säilyy puhtaasti imaginäärisenä. Mutta siitä saattaa tulla moniarvoinen, koska t*k ei välttämättä ole kokonaisluku kaikilla k. Jos t on rationaaliluku, niin tulee vain äärellisen monta eri arvoa (supistetun muodon nimittäjä). Esim t=1/2, niin neliöjuuria on kaksi.

        Itseisarvon muutos tulee siis potenssin imaginäärisestä komponentista: Jos laitetaan potenssiin t s*i, niin

        e^(-(s*pi/2 s*k*2pi) i*(t*pi/2 t*k*2pi))

        Jos nyt s on nollasta poikkeava, niin tällähän on aina äärettömän monta eri arvoa, itseisarvoltaan mielivaltaisen pieniä ja suuria.


    • Anonyymi

      Täällä https://www.tekniikkatalous.fi/uutiset/tt/ee4e8287-550e-45ae-9afa-4b4fa5babd12?ref=ampparit:ae87 lisää ihmeellisestä iistä.

      • Anonyymi

        /- i on yhtälön x^2 1 = 0 ratkaisu. Voidaan myös sanoa, että i = sqrt(-1). Sarjakehitelmällä voidaan sosittaa, että e^(i fii) = cos(fii) i sin(fii). Näin ollen e^(i pii/2) = i.


      • Anonyymi

        Jos olisi aikoinaan vain tyydytty siihen, että yhtälöllä x^2 1 = 0 ei ole ratkaisua, niin asia olisi varmaan jäänyt hiertämään. Niinpä oletettiin, että on joku ratkaisu x = i. Tästä seuraa, että i^2 = -1. Päätelmällä on ollut kauaskantoiset vaikutukset matematiikassa ja sitä kautta fysiikassa ja tekniikassa. Kun mukaan otetan vielä toinen kirjain eli e, niin ollan matematiikan ytimessä.


      • Anonyymi

        Olkoon
        f(x) = a^x
        Millä a:n arvolla pätee
        df(x)/dx = f(x)
        Vastaus on a = e. Tämän voi helposti itsekin johtaa ratkaisemalla tuon yhtälön diskretoimalla. e:n numeerinen arvo on 2,718281828.....


    • Anonyymi

      Helppohan se on pelkkää yhtä kirjainta korottaa itsensä potenssiin. Olkoon se vaikka i tai a. Mutta jos vaikka h pitäisi korottaa potenssiin g. On pikkusen vaikeampaa.

      Entäpä jos f korotetaan potenssiin s ja tämä vielä korotetaan potenssiin r? Meneekö liian vaikeaksi?

      Kuka puhuikaan potenssista? Mulla riittää!

      Vastahan tein lyömättömän ennätyksen kakkosen korottamisessa ja tätäkin suuremman potenssikorotuksen.

      • Anonyymi

        Minä korotan kaikki kirjaimet ja numerot potenssien potensseihin. Suurimmat potenssit lausun minä. Myöskin vaikeimmat. Mulla potenssia riittää.

        i potenssiin i on peruskauraa. Helposti lyön lisää löylyä kiukaalle: i^i^i^i^i^i^iiiiii^iii^i!

        Tällekin löydän arvon. Eniten tykkään kuiteskin suurista potensseista. Mielettömän suurista. Minä lataan kaikista suurimmat potenssit kehään.


    • Anonyymi

      i = e^(i pii/2)
      i ^i = (e^(i pii/2) ^i = e^(i^2 pii/2) = e^(- pii/2) = =,207879576...
      Tämä on transkendenttiluku.

      • Anonyymi

        p.o : ...= 0,207879578...


      • Anonyymi

        Ja tuli vielä sulkumerkkivirhekin. Uudestaan:
        i ^i = (e^(i pii/2)) ^i=e ^(i ^2 pii/2) = e ^(- pii/2) = 0,207879576...


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Minkähän takia ns. persuille ei tunnu työ maistuvan?

      Vaikuttavat olevan joutoväkeä syystä tai toisesta  – työttömiä tai työeläkeloisia. Muiden rahoilla pötköttelevää väkeä,
      Maailman menoa
      25
      2144
    2. Suomen veroaste 5 %-yks liian matala

      Palauttamalla kokonaisveroaste 1990-luvun tasolle saadaan hyvinvointivaltion palvelut rahoitettua ilman velan ottoa.
      Maailman menoa
      92
      1965
    3. Kolme neljästä suomalaisesta kannattaa miljonääriveroa

      Kertoo vasemmistoliiton teettämä kysely. Veron ulkopuolelle jätettäisiin asunto. "Puolet vastaajista oli sitä mieltä, e
      Maailman menoa
      88
      1931
    4. MTV: Harvinainen haastattelu! Vappu Pimiä kommentoi vihdoinkin uutta TTK-juontajaa

      TTK-juontajaspekuloinnit käyvät edelleen kuumana. Kenet sinä haluaisit uudeksi TTK-juontajaksi? Kommentoi alle! Lue,
      Suomalaiset julkkikset
      13
      1643
    5. Olit ihan

      Kiihkona silloin. Sen näki ja lähes tunsi. Ei tainnut olla kaukana et olisit vetänyt lähellesi jos siihen olisi hetki tu
      Ikävä
      24
      1527
    6. Evoluutioon ja alkuräjähdykseen uskominen vaatii todella vahvaa uskoa

      Että tyhjästä syntyi ja kehittyi kaikki se mitä näemme ympärillämme.
      Luterilaisuus
      488
      1496
    7. Yleveron tuotto siirrettävä S-ryhmälle

      Yleisradio on mukana kansanmurhassa. Tuollaista ei voi tukea verovaroin. S-ryhmä on ainoa selkärankainen iso toimija S
      Maailman menoa
      1
      1494
    8. Mikä ihme teitä lieksalaisia tuossa

      p*rs*reiässä niin kiinnostelee? Että siitä pitää päntönnään huutaa?
      Lieksa
      49
      1300
    9. Mistä juttelit viimeisen kerran

      Mistä juttelitte viimeisen kerran ikävöinnin kohteen kanssa? Irl tai viesteillä.
      Ikävä
      75
      1174
    10. Kemet lomautukset

      Onkohan tuo oikein lain mukaista toimintaa jatkaa jo lomautettuina olevien uudelleen lomautusta yhdenvertaisuuden ja tas
      Suomussalmi
      35
      1169
    Aihe