Ii potenssiin ii

Anonyymi

Määritä i^i arvo.

13

371

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Koska kompleksinen eksponenttifunktio on jaksollinen, i^i:llä on äärettömän monta arvoa. ”Pääsarjan” mukainen arvo sille on e^(-pii/2). Myös kaikki muut arvot ovat reaalisia.

      • Anonyymi

        Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
        Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä?


      • Anonyymi
        Anonyymi kirjoitti:

        Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
        Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä?

        i ei ole lukumäärä, joten tuo ajatelma ei päde.

        Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1.


      • Anonyymi
        Anonyymi kirjoitti:

        i ei ole lukumäärä, joten tuo ajatelma ei päde.

        Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1.

        Ja myös millä tahansa reaalisella. Iihän on e^(i*(pi/2 k*2pi)), joten i^t reaaliluvulle t on

        e^(i*(t*pi/2 t*k*2pi))

        Tämä säilyy yksikköympyrällä, koska potenssi säilyy puhtaasti imaginäärisenä. Mutta siitä saattaa tulla moniarvoinen, koska t*k ei välttämättä ole kokonaisluku kaikilla k. Jos t on rationaaliluku, niin tulee vain äärellisen monta eri arvoa (supistetun muodon nimittäjä). Esim t=1/2, niin neliöjuuria on kaksi.

        Itseisarvon muutos tulee siis potenssin imaginäärisestä komponentista: Jos laitetaan potenssiin t s*i, niin

        e^(-(s*pi/2 s*k*2pi) i*(t*pi/2 t*k*2pi))

        Jos nyt s on nollasta poikkeava, niin tällähän on aina äärettömän monta eri arvoa, itseisarvoltaan mielivaltaisen pieniä ja suuria.


    • Anonyymi

      Täällä https://www.tekniikkatalous.fi/uutiset/tt/ee4e8287-550e-45ae-9afa-4b4fa5babd12?ref=ampparit:ae87 lisää ihmeellisestä iistä.

      • Anonyymi

        /- i on yhtälön x^2 1 = 0 ratkaisu. Voidaan myös sanoa, että i = sqrt(-1). Sarjakehitelmällä voidaan sosittaa, että e^(i fii) = cos(fii) i sin(fii). Näin ollen e^(i pii/2) = i.


      • Anonyymi

        Jos olisi aikoinaan vain tyydytty siihen, että yhtälöllä x^2 1 = 0 ei ole ratkaisua, niin asia olisi varmaan jäänyt hiertämään. Niinpä oletettiin, että on joku ratkaisu x = i. Tästä seuraa, että i^2 = -1. Päätelmällä on ollut kauaskantoiset vaikutukset matematiikassa ja sitä kautta fysiikassa ja tekniikassa. Kun mukaan otetan vielä toinen kirjain eli e, niin ollan matematiikan ytimessä.


      • Anonyymi

        Olkoon
        f(x) = a^x
        Millä a:n arvolla pätee
        df(x)/dx = f(x)
        Vastaus on a = e. Tämän voi helposti itsekin johtaa ratkaisemalla tuon yhtälön diskretoimalla. e:n numeerinen arvo on 2,718281828.....


    • Anonyymi

      Helppohan se on pelkkää yhtä kirjainta korottaa itsensä potenssiin. Olkoon se vaikka i tai a. Mutta jos vaikka h pitäisi korottaa potenssiin g. On pikkusen vaikeampaa.

      Entäpä jos f korotetaan potenssiin s ja tämä vielä korotetaan potenssiin r? Meneekö liian vaikeaksi?

      Kuka puhuikaan potenssista? Mulla riittää!

      Vastahan tein lyömättömän ennätyksen kakkosen korottamisessa ja tätäkin suuremman potenssikorotuksen.

      • Anonyymi

        Minä korotan kaikki kirjaimet ja numerot potenssien potensseihin. Suurimmat potenssit lausun minä. Myöskin vaikeimmat. Mulla potenssia riittää.

        i potenssiin i on peruskauraa. Helposti lyön lisää löylyä kiukaalle: i^i^i^i^i^i^iiiiii^iii^i!

        Tällekin löydän arvon. Eniten tykkään kuiteskin suurista potensseista. Mielettömän suurista. Minä lataan kaikista suurimmat potenssit kehään.


    • Anonyymi

      i = e^(i pii/2)
      i ^i = (e^(i pii/2) ^i = e^(i^2 pii/2) = e^(- pii/2) = =,207879576...
      Tämä on transkendenttiluku.

      • Anonyymi

        p.o : ...= 0,207879578...


      • Anonyymi

        Ja tuli vielä sulkumerkkivirhekin. Uudestaan:
        i ^i = (e^(i pii/2)) ^i=e ^(i ^2 pii/2) = e ^(- pii/2) = 0,207879576...


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Eli persujen rääkyminen Marinin hallituksen velanotosta oli sitä itseään

      "Valtiovarainministeriön mukaan Marinin hallitus lisäsi valtion pysyviä menoja 3 miljardia eikä 11 miljardia euroa." El
      Maailman menoa
      74
      6334
    2. MTV3 - Auerin poika todistaa videolla, miten Anneli pahoinpiteli lapsia!

      Kello 10.04 – Ainakin kerran viikossa se löi. Löi muitakin sisaruksia, mutta ei isosiskoa. Nuorinta siskoa en ole nähny
      Henkirikokset
      41
      5398
    3. Orpon hallitus paskoi kaikki hommat

      ja "yllätäen" ilmestyi raportti Marinin hallituksen tuhlailusta, raportti tuli kuin TILAUKSESTA.
      Maailman menoa
      61
      4264
    4. NO NIIN! Nyt on sitten prinsessa Sannan sädekehä lopullisesti rikottu

      narsistia ei kannata enää kuin ne fanaattisimmat kulttilaiset, jotka ovat myös sitä Suomen heikkoälyisintä sakkia. Kun
      Maailman menoa
      73
      4132
    5. Kansa haluaa Marinin hallituksen takaisin ja Orpon pois

      Suomen kansa on nyt ilmoittanut millaisen hallituksen Suomi tarvitsee. "Suomalaisten suosikki seuraavaksi hallituspohja
      Maailman menoa
      67
      3891
    6. Mikä piirre kaivatussa on sinulle se juttu?

      Tunnetko kaivattuasi vai onko hän haavekuva, jota et edes tunne? Joskus tää asia ei ole niin selvää.
      Ikävä
      74
      1218
    7. Tylsille treffeille

      Hiljaisen ukon kans nuotiolle?
      Tunteet
      327
      1082
    8. Anteeksi kaikesta...

      Olin tosi hölmö...
      Ikävä
      59
      1042
    9. Onko kaivattusi muuttunut sinä aikana

      Kun olet hänet tuntenut? Jos, mihin suuntaan? Mistä epäilet muuttumisen johtuneen?
      Ikävä
      32
      870
    10. Toivotko, että

      Toivotko, että hän yrittäisi jutella sinulle? Vai toivotko, että itse voisit mennä juttelemaan?
      Ikävä
      62
      821
    Aihe