Ii potenssiin ii

Anonyymi

Määritä i^i arvo.

13

372

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Koska kompleksinen eksponenttifunktio on jaksollinen, i^i:llä on äärettömän monta arvoa. ”Pääsarjan” mukainen arvo sille on e^(-pii/2). Myös kaikki muut arvot ovat reaalisia.

      • Anonyymi

        Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
        Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä?


      • Anonyymi
        Anonyymi kirjoitti:

        Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
        Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä?

        i ei ole lukumäärä, joten tuo ajatelma ei päde.

        Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1.


      • Anonyymi
        Anonyymi kirjoitti:

        i ei ole lukumäärä, joten tuo ajatelma ei päde.

        Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1.

        Ja myös millä tahansa reaalisella. Iihän on e^(i*(pi/2 k*2pi)), joten i^t reaaliluvulle t on

        e^(i*(t*pi/2 t*k*2pi))

        Tämä säilyy yksikköympyrällä, koska potenssi säilyy puhtaasti imaginäärisenä. Mutta siitä saattaa tulla moniarvoinen, koska t*k ei välttämättä ole kokonaisluku kaikilla k. Jos t on rationaaliluku, niin tulee vain äärellisen monta eri arvoa (supistetun muodon nimittäjä). Esim t=1/2, niin neliöjuuria on kaksi.

        Itseisarvon muutos tulee siis potenssin imaginäärisestä komponentista: Jos laitetaan potenssiin t s*i, niin

        e^(-(s*pi/2 s*k*2pi) i*(t*pi/2 t*k*2pi))

        Jos nyt s on nollasta poikkeava, niin tällähän on aina äärettömän monta eri arvoa, itseisarvoltaan mielivaltaisen pieniä ja suuria.


    • Anonyymi

      Täällä https://www.tekniikkatalous.fi/uutiset/tt/ee4e8287-550e-45ae-9afa-4b4fa5babd12?ref=ampparit:ae87 lisää ihmeellisestä iistä.

      • Anonyymi

        /- i on yhtälön x^2 1 = 0 ratkaisu. Voidaan myös sanoa, että i = sqrt(-1). Sarjakehitelmällä voidaan sosittaa, että e^(i fii) = cos(fii) i sin(fii). Näin ollen e^(i pii/2) = i.


      • Anonyymi

        Jos olisi aikoinaan vain tyydytty siihen, että yhtälöllä x^2 1 = 0 ei ole ratkaisua, niin asia olisi varmaan jäänyt hiertämään. Niinpä oletettiin, että on joku ratkaisu x = i. Tästä seuraa, että i^2 = -1. Päätelmällä on ollut kauaskantoiset vaikutukset matematiikassa ja sitä kautta fysiikassa ja tekniikassa. Kun mukaan otetan vielä toinen kirjain eli e, niin ollan matematiikan ytimessä.


      • Anonyymi

        Olkoon
        f(x) = a^x
        Millä a:n arvolla pätee
        df(x)/dx = f(x)
        Vastaus on a = e. Tämän voi helposti itsekin johtaa ratkaisemalla tuon yhtälön diskretoimalla. e:n numeerinen arvo on 2,718281828.....


    • Anonyymi

      Helppohan se on pelkkää yhtä kirjainta korottaa itsensä potenssiin. Olkoon se vaikka i tai a. Mutta jos vaikka h pitäisi korottaa potenssiin g. On pikkusen vaikeampaa.

      Entäpä jos f korotetaan potenssiin s ja tämä vielä korotetaan potenssiin r? Meneekö liian vaikeaksi?

      Kuka puhuikaan potenssista? Mulla riittää!

      Vastahan tein lyömättömän ennätyksen kakkosen korottamisessa ja tätäkin suuremman potenssikorotuksen.

      • Anonyymi

        Minä korotan kaikki kirjaimet ja numerot potenssien potensseihin. Suurimmat potenssit lausun minä. Myöskin vaikeimmat. Mulla potenssia riittää.

        i potenssiin i on peruskauraa. Helposti lyön lisää löylyä kiukaalle: i^i^i^i^i^i^iiiiii^iii^i!

        Tällekin löydän arvon. Eniten tykkään kuiteskin suurista potensseista. Mielettömän suurista. Minä lataan kaikista suurimmat potenssit kehään.


    • Anonyymi

      i = e^(i pii/2)
      i ^i = (e^(i pii/2) ^i = e^(i^2 pii/2) = e^(- pii/2) = =,207879576...
      Tämä on transkendenttiluku.

      • Anonyymi

        p.o : ...= 0,207879578...


      • Anonyymi

        Ja tuli vielä sulkumerkkivirhekin. Uudestaan:
        i ^i = (e^(i pii/2)) ^i=e ^(i ^2 pii/2) = e ^(- pii/2) = 0,207879576...


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Erään T miehen viimeinen aloitus tänne

      Moi Olen kirjoittanut täällä säännöllisesti yli 5 vuotta. Kaivannut kuten kuuluukiin, mutta myös unohdellut ja selvitel
      Ikävä
      35
      3615
    2. Sanna vaihteeksi Australian "60 minuuttia" ohjelmassa

      Kansanvälinen superstaramme esiintyi tällä kertaa toisella puolen maapalloa esitettävässä ohjelmassa. Kiinnostus on kova
      Maailman menoa
      131
      2475
    3. Yritykset verolle ja yritystuet 10 mrd. eur/v pois

      Kiristämistapauksissa yrityksille sanotaan hei hei. Suomi ei tarvitse yhteiskunnan rahoilla "yrittämistä". Yhteiskunta v
      Maailman menoa
      37
      1990
    4. Sanna Antikainen (ps) : Vornasen pyssy suututti demarit

      https://www.suomenuutiset.fi/sanna-antikaisen-kolumni-vornasen-pyssy-suututti-demarit-mutta-kuka-puhuu-totta/ Vornasen
      Maailman menoa
      10
      1583
    5. Yritän saada sinut pois mielestäni ja ajatuksistani nainen

      Turhaan. Mitä enemmän yritän, sitä enemmän haluan sinut ja sinua. Miten voitkaan olla niin ihana ja tuntua niin hyvältä.
      Ikävä
      76
      1556
    6. Nyt meni maku vas.liittoon, kun vaativat minimituntipalkkaa lakiin

      Sehän tarkoittaa samalla myös maksimituntipalkkaa, koska kun laki on kerran laadittu, niin sitä on vaikea muuttaa. Työma
      Maailman menoa
      56
      1346
    7. Miksi rakastuit ?

      Kyseiseen naiseen?
      Ikävä
      67
      1240
    8. Mun on pakko uskaltaa

      Mikäköhän olisi pahin skenaario, jos vain laittaisin hänelle viestin, et haluan jutella meistä? Se, että hän vastaisi, e
      Ikävä
      61
      1208
    9. Leikitään tavuleikkiä

      Millaiset nimitavut muodostuvat jos yhdistät oman etunimesi ensimmäisen tavun ja kaipaamasi ihmisen etunimen ensimmäisen
      Ikävä
      68
      1194
    10. Mikä on sinun ja kaivattusi ikä

      💕💕💕💕
      Ikävä
      67
      1140
    Aihe