Määritä i^i arvo.
Ii potenssiin ii
13
383
Vastaukset
- Anonyymi
Koska kompleksinen eksponenttifunktio on jaksollinen, i^i:llä on äärettömän monta arvoa. ”Pääsarjan” mukainen arvo sille on e^(-pii/2). Myös kaikki muut arvot ovat reaalisia.
- Anonyymi
Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä? - Anonyymi
Anonyymi kirjoitti:
Jos kertoo keskenään kaksi lukua, joiden itseisarvo on 1, esimerkiksi i*i, niin tulonkin itseisarvo on 1.
Jos kertolaskun toistaa i kertaa, niin missä vaiheessa tulon itseisarvo poikkeaa ykkösestä?i ei ole lukumäärä, joten tuo ajatelma ei päde.
Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1. - Anonyymi
Anonyymi kirjoitti:
i ei ole lukumäärä, joten tuo ajatelma ei päde.
Siinä olet oikeassa, että millä tahansa kokonaisluvulla n (jotka siis ovat lukumääriä) luvun i^n itseisarvo on 1.Ja myös millä tahansa reaalisella. Iihän on e^(i*(pi/2 k*2pi)), joten i^t reaaliluvulle t on
e^(i*(t*pi/2 t*k*2pi))
Tämä säilyy yksikköympyrällä, koska potenssi säilyy puhtaasti imaginäärisenä. Mutta siitä saattaa tulla moniarvoinen, koska t*k ei välttämättä ole kokonaisluku kaikilla k. Jos t on rationaaliluku, niin tulee vain äärellisen monta eri arvoa (supistetun muodon nimittäjä). Esim t=1/2, niin neliöjuuria on kaksi.
Itseisarvon muutos tulee siis potenssin imaginäärisestä komponentista: Jos laitetaan potenssiin t s*i, niin
e^(-(s*pi/2 s*k*2pi) i*(t*pi/2 t*k*2pi))
Jos nyt s on nollasta poikkeava, niin tällähän on aina äärettömän monta eri arvoa, itseisarvoltaan mielivaltaisen pieniä ja suuria.
- Anonyymi
Täällä https://www.tekniikkatalous.fi/uutiset/tt/ee4e8287-550e-45ae-9afa-4b4fa5babd12?ref=ampparit:ae87 lisää ihmeellisestä iistä.
- Anonyymi
/- i on yhtälön x^2 1 = 0 ratkaisu. Voidaan myös sanoa, että i = sqrt(-1). Sarjakehitelmällä voidaan sosittaa, että e^(i fii) = cos(fii) i sin(fii). Näin ollen e^(i pii/2) = i.
- Anonyymi
Jos olisi aikoinaan vain tyydytty siihen, että yhtälöllä x^2 1 = 0 ei ole ratkaisua, niin asia olisi varmaan jäänyt hiertämään. Niinpä oletettiin, että on joku ratkaisu x = i. Tästä seuraa, että i^2 = -1. Päätelmällä on ollut kauaskantoiset vaikutukset matematiikassa ja sitä kautta fysiikassa ja tekniikassa. Kun mukaan otetan vielä toinen kirjain eli e, niin ollan matematiikan ytimessä.
- Anonyymi
Olkoon
f(x) = a^x
Millä a:n arvolla pätee
df(x)/dx = f(x)
Vastaus on a = e. Tämän voi helposti itsekin johtaa ratkaisemalla tuon yhtälön diskretoimalla. e:n numeerinen arvo on 2,718281828.....
- Anonyymi
Helppohan se on pelkkää yhtä kirjainta korottaa itsensä potenssiin. Olkoon se vaikka i tai a. Mutta jos vaikka h pitäisi korottaa potenssiin g. On pikkusen vaikeampaa.
Entäpä jos f korotetaan potenssiin s ja tämä vielä korotetaan potenssiin r? Meneekö liian vaikeaksi?
Kuka puhuikaan potenssista? Mulla riittää!
Vastahan tein lyömättömän ennätyksen kakkosen korottamisessa ja tätäkin suuremman potenssikorotuksen.- Anonyymi
Minä korotan kaikki kirjaimet ja numerot potenssien potensseihin. Suurimmat potenssit lausun minä. Myöskin vaikeimmat. Mulla potenssia riittää.
i potenssiin i on peruskauraa. Helposti lyön lisää löylyä kiukaalle: i^i^i^i^i^i^iiiiii^iii^i!
Tällekin löydän arvon. Eniten tykkään kuiteskin suurista potensseista. Mielettömän suurista. Minä lataan kaikista suurimmat potenssit kehään.
- Anonyymi
i = e^(i pii/2)
i ^i = (e^(i pii/2) ^i = e^(i^2 pii/2) = e^(- pii/2) = =,207879576...
Tämä on transkendenttiluku.- Anonyymi
p.o : ...= 0,207879578...
- Anonyymi
Ja tuli vielä sulkumerkkivirhekin. Uudestaan:
i ^i = (e^(i pii/2)) ^i=e ^(i ^2 pii/2) = e ^(- pii/2) = 0,207879576...
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Nasima löi Jussille luun kurkkuun
Nasima kertoi ettei Jussi sovi puhemieheksi, koska sallii rasismin. Mihin toimiin perussuomalaiset ryhtyvät? Kuka nouse3177405Razmyar on säälittävä - puhemiehellä ei ole mitään syytä ottaa kantaa tähän "silmäkohuun"
jonka toimittajat sai aikaan. Asia ei kuulu puhemiehelle millään lailla. Razmyar haluaa taas vaan huomiota. Mutta jos r695225Pitkän linjan yritysjohtaja: Suomen tapahtumat eivät ole Aasian kärkiuutinen
Viimeaikaista kohua on käytetty sisäpoliittisena lyömäaseena, Thomas Zilliacus sanoo. – Koska asiaa kuitenkin kommentoi1014544Siviilipalvelusmies Halla-aho normalisoi rasismin perussuomalaisissa
SMP:n tuhkille perustettu puolue ei ollut ihmisiä vastaan, vaan instituutiokriittinen. "Missä EU - siellä ongelma", oli174352Miten Eerolan silmäkuvat voivat levitä muutamassa tunnissa ympäri maailmaa?
Seuraako koko maailma persujen ja erityisesti Eerolan somea reaaliajassa? Edes kansanedustajan itsemurha eduskuntatalos1194145Suomalaisilta vaaditaan valtavasti suvaitsevaisuutta - miksi sitä ei vaadita muslimeilta
Suomalaisilta vaaditaan kaikkea, pitää olla suvaitsevainen ja hyväksyä vieraiden tavat, rasisti ei saa olla jne. Miksi s513900Juuri Suomen valtamedian toimittajat teki "silmävääntelystä" sen kohun
ja ilmeisesti ottivat yhteyttä myös ulkomaisiin medioihin, että katsokaas tätä. Mutta Japanin medioissa on asiaan suhta1543780Demarit ovat oikeasti törppöjä eli heikkoälyisiä
ja todistavat sitä päivittäin täällä lapsellisilla jutuillaan. Kauheasti on hehkuttaneet kuinka demarien kannatus vaan743687Perussuomalaiset eivät harrasta maalittamista kuten vasemmisto
Huomaa tässä keinotekoisessa "rasismi"-kohussakin kuinka vasemmistolaiset maalittavat Perussuomalaisia. Me emme vastaava293586SDP:n kansanedustaja Marko Asell: Suomen myönnettävä maahanmuuton ongelmat
Hänen mielestään Suomen pitää pyrkiä rajoittamaan jyrkästi turvapaikanhakijoiden pääsyä maahan ja hän arvioi, että maaha833413