Neperin luku ja pii

Anonyymi

Ovatko ihmiskunnan fiksuimmat valinneet alun perin väärän asteikon tai lukujärjestelmän, kun matematiikan perusvakioita ei ole saatu taivutettua kokonaisluvuiksi, vaan niitä pitää roikuttaa mukana symbolein?

10

981

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Joukosta puuttuu vielä i
      e^( i pii) 1 = 0

      Tietokoneissa tarvitaan vain 0 ja 1.

      • Anonyymi

        i on yhtälön x^2 1 = 0 ratkaisu
        e on sellainen luku a, jolla funktion a^x derivaatta on a^x
        pii = ympyrän piiri/ ympyrän halkaisija


    • Anonyymi

      Niillä viksuilla olis varmaan pitäny sit olla irrationaaline määrä sormia

    • Toisilleen vieraissakin kulttuureissa ja kaikilla lukujärjestelmillä on ympyrän neliöintiä yritetty jo tuhansia vuosia siinä onnistumatta.

      Matemaattinen todistelu aiheesta on varsin monimutkainen sekin, mutta siitä selviää, ettei onnistu, eikä todistelua olla pystytty kumoamaankaan.

    • Anonyymi

      Pii-kantaisessa lukujärjestelmässä pii on
      kokonaisluku.

      • Anonyymi

        Mutta mielenkiintoinen kysymys onkin, että mitä napierin luku on tässä järjestelmässä.
        Sitähän ei tiedetä onko e/pii rationaalinen (hyvin vahva veikkaus on että ei ole!). Jos olisi e/pii = p/q, niin ottamalla kantaluvuksi pii/q, saataisiin e ilmaistua kokonaislukuna. Mutta toisaalta piitähän tässä ei varmaan sittenkään saataisi koska nimittäjässä on q ja Jumala tietää miten pii:n korkeammat potenssit sitten piihin suhtautuvatkaan (irrationaalisesti tietenkin).

        Mutta

        pi/e = integraali yli koko reaaliakselin funktiosta cos(x)/(1 x^2),

        niin saisiko tästä irrationaalitodistuksen? Kirjoittaa kosinin Taylorin sarjanaan ja integroi termeittäin ja sitten käyttää samoja menetelmiä kuin esim een osoittamissessa. Päädytään että jokin kokonaisluku on aidosti kahden muun kokonaisluvun välissä.


      • Anonyymi
        Anonyymi kirjoitti:

        Mutta mielenkiintoinen kysymys onkin, että mitä napierin luku on tässä järjestelmässä.
        Sitähän ei tiedetä onko e/pii rationaalinen (hyvin vahva veikkaus on että ei ole!). Jos olisi e/pii = p/q, niin ottamalla kantaluvuksi pii/q, saataisiin e ilmaistua kokonaislukuna. Mutta toisaalta piitähän tässä ei varmaan sittenkään saataisi koska nimittäjässä on q ja Jumala tietää miten pii:n korkeammat potenssit sitten piihin suhtautuvatkaan (irrationaalisesti tietenkin).

        Mutta

        pi/e = integraali yli koko reaaliakselin funktiosta cos(x)/(1 x^2),

        niin saisiko tästä irrationaalitodistuksen? Kirjoittaa kosinin Taylorin sarjanaan ja integroi termeittäin ja sitten käyttää samoja menetelmiä kuin esim een osoittamissessa. Päädytään että jokin kokonaisluku on aidosti kahden muun kokonaisluvun välissä.

        Ai niin, joo mutnoi termittäiset integraalit ei suppene.


    • Anonyymi

      Lukujärjestelmää eivät panneet alulle ihmiskunnan fiksuimmat, vaan käytännöllisimmät. Fiksuimmat ovat yksinkertaisesti jatkaneet siitä, mihin sormia ja varpaita laskemalla on päästy.

      Jos joku olisikin keksinyt panna alulle pii- tai e-kantaisen lukujärjestelmän, se tuskin olisi saanut kovin paljon suosiota, koska tuossa järjestelmässä esimerkiksi sormien lukumäärä olisi väistämättä irrationaalinen (ja vieläpä transkendenttinen), mikä olisi ehkä vielä hieman kiusallisempaa kuin se, että ympyrän piirin ja halkaisijan suhdetta on hieman hankalaa käsitellä.

    • Anonyymi

      On aivan sama, mikä se lukujärjestelmä on, kaavat pysyvät silti samoina. Ympyrän pinta-ala on pii * säde^2 ja neliön lävistäjä sqrt(2) * sivunpituus. Näillä kaavoilla ei ole aavistustakaan, mitä lukujärjestelmää ihmiset käyttävät. Samoin uusia tuloksia johdettaessa lukujärjestelmä ei vaikuta todistuksiin, ellei kyseessä ole nimen omaan jotain tiettyä lukujärjestelmää koskeva tulos.

      Lukujärjestelmällä onkin lähinnä väliä arkisissa tilanteissa, jolloin piit ja eet ovat turhia.

    • Anonyymi

      Jostain luin että tietokoneisiin suunniteltiin alunperin e -kantaista järjestelmää. En ole ihan perillä, että miksi.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Orpo hiiri kadoksissa, Marin jo kommentoi

      Kuinka on valtiojohto hukassa, kun vihollinen Grönlantia valloittaa? Putinisti Purra myös hiljaa kuin kusi sukassa.
      Maailman menoa
      117
      6319
    2. Lopeta jo pelleily, tiedän kyllä mitä yrität mies

      Et tule siinä onnistumaan. Tiedät kyllä, että tämä on just sulle. Sä et tule multa samaan minkäänlaista responssia, kosk
      Ikävä
      379
      6125
    3. Nuori lapualainen nainen tapettu Tampereella?

      Työ­matkalainen havahtui erikoiseen näkyyn hotellin käytävällä Tampereella – tämä kaikki epäillystä hotelli­surmasta tie
      Lapua
      69
      5850
    4. Tampereen "empatiatalu" - "Harvoin näkee mitään näin kajahtanutta"

      sanoo kokoomuslainen. Tampereen kaupunginvaltuuston maanantain kokouksessa käsiteltävä Tampereen uusi hyvinvointisuunni
      Maailman menoa
      344
      3952
    5. Lidl teki sen mistä puhuin jo vuosikymmen sitten

      Eli asiakkaat saavat nyt "skannata" ostoksensa keräilyvaiheessa omalla älypuhelimellaan, jolloin ei tarvitse mitään eril
      Maailman menoa
      145
      2355
    6. Ukraina, unohtui korona - Grönlanti, unohtu Ukraina

      Vinot silmät, unohtui Suomen valtiontalouden turmeleminen.
      Maailman menoa
      4
      2335
    7. Orpo pihalla kuin lumiukko

      Onneksi pääministerimme ei ole ulkopolitiikassa päättäjiemme kärki. Hänellä on täysin lapsellisia luuloja Trumpin ja USA
      Kansallinen Kokoomus
      117
      1393
    8. Onko täällä helmessä tapahtunut vakava rikos?

      Onko kuullut kukaan mitään.
      Haapavesi
      12
      1221
    9. Miten kauan sulla menisi

      Jos tulisit mun luo tänne nyt kahvinkeittoon?
      Ikävä
      182
      1052
    10. Miksi me oikein

      Rakastuttiin?
      Ikävä
      59
      877
    Aihe