Ovatko ihmiskunnan fiksuimmat valinneet alun perin väärän asteikon tai lukujärjestelmän, kun matematiikan perusvakioita ei ole saatu taivutettua kokonaisluvuiksi, vaan niitä pitää roikuttaa mukana symbolein?
Neperin luku ja pii
10
981
Vastaukset
- Anonyymi
Joukosta puuttuu vielä i
e^( i pii) 1 = 0
Tietokoneissa tarvitaan vain 0 ja 1.- Anonyymi
i on yhtälön x^2 1 = 0 ratkaisu
e on sellainen luku a, jolla funktion a^x derivaatta on a^x
pii = ympyrän piiri/ ympyrän halkaisija
- Anonyymi
Niillä viksuilla olis varmaan pitäny sit olla irrationaaline määrä sormia
Toisilleen vieraissakin kulttuureissa ja kaikilla lukujärjestelmillä on ympyrän neliöintiä yritetty jo tuhansia vuosia siinä onnistumatta.
Matemaattinen todistelu aiheesta on varsin monimutkainen sekin, mutta siitä selviää, ettei onnistu, eikä todistelua olla pystytty kumoamaankaan.- Anonyymi
Pii-kantaisessa lukujärjestelmässä pii on
kokonaisluku.- Anonyymi
Mutta mielenkiintoinen kysymys onkin, että mitä napierin luku on tässä järjestelmässä.
Sitähän ei tiedetä onko e/pii rationaalinen (hyvin vahva veikkaus on että ei ole!). Jos olisi e/pii = p/q, niin ottamalla kantaluvuksi pii/q, saataisiin e ilmaistua kokonaislukuna. Mutta toisaalta piitähän tässä ei varmaan sittenkään saataisi koska nimittäjässä on q ja Jumala tietää miten pii:n korkeammat potenssit sitten piihin suhtautuvatkaan (irrationaalisesti tietenkin).
Mutta
pi/e = integraali yli koko reaaliakselin funktiosta cos(x)/(1 x^2),
niin saisiko tästä irrationaalitodistuksen? Kirjoittaa kosinin Taylorin sarjanaan ja integroi termeittäin ja sitten käyttää samoja menetelmiä kuin esim een osoittamissessa. Päädytään että jokin kokonaisluku on aidosti kahden muun kokonaisluvun välissä. - Anonyymi
Anonyymi kirjoitti:
Mutta mielenkiintoinen kysymys onkin, että mitä napierin luku on tässä järjestelmässä.
Sitähän ei tiedetä onko e/pii rationaalinen (hyvin vahva veikkaus on että ei ole!). Jos olisi e/pii = p/q, niin ottamalla kantaluvuksi pii/q, saataisiin e ilmaistua kokonaislukuna. Mutta toisaalta piitähän tässä ei varmaan sittenkään saataisi koska nimittäjässä on q ja Jumala tietää miten pii:n korkeammat potenssit sitten piihin suhtautuvatkaan (irrationaalisesti tietenkin).
Mutta
pi/e = integraali yli koko reaaliakselin funktiosta cos(x)/(1 x^2),
niin saisiko tästä irrationaalitodistuksen? Kirjoittaa kosinin Taylorin sarjanaan ja integroi termeittäin ja sitten käyttää samoja menetelmiä kuin esim een osoittamissessa. Päädytään että jokin kokonaisluku on aidosti kahden muun kokonaisluvun välissä.Ai niin, joo mutnoi termittäiset integraalit ei suppene.
- Anonyymi
Lukujärjestelmää eivät panneet alulle ihmiskunnan fiksuimmat, vaan käytännöllisimmät. Fiksuimmat ovat yksinkertaisesti jatkaneet siitä, mihin sormia ja varpaita laskemalla on päästy.
Jos joku olisikin keksinyt panna alulle pii- tai e-kantaisen lukujärjestelmän, se tuskin olisi saanut kovin paljon suosiota, koska tuossa järjestelmässä esimerkiksi sormien lukumäärä olisi väistämättä irrationaalinen (ja vieläpä transkendenttinen), mikä olisi ehkä vielä hieman kiusallisempaa kuin se, että ympyrän piirin ja halkaisijan suhdetta on hieman hankalaa käsitellä. - Anonyymi
On aivan sama, mikä se lukujärjestelmä on, kaavat pysyvät silti samoina. Ympyrän pinta-ala on pii * säde^2 ja neliön lävistäjä sqrt(2) * sivunpituus. Näillä kaavoilla ei ole aavistustakaan, mitä lukujärjestelmää ihmiset käyttävät. Samoin uusia tuloksia johdettaessa lukujärjestelmä ei vaikuta todistuksiin, ellei kyseessä ole nimen omaan jotain tiettyä lukujärjestelmää koskeva tulos.
Lukujärjestelmällä onkin lähinnä väliä arkisissa tilanteissa, jolloin piit ja eet ovat turhia. - Anonyymi
Jostain luin että tietokoneisiin suunniteltiin alunperin e -kantaista järjestelmää. En ole ihan perillä, että miksi.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Orpo hiiri kadoksissa, Marin jo kommentoi
Kuinka on valtiojohto hukassa, kun vihollinen Grönlantia valloittaa? Putinisti Purra myös hiljaa kuin kusi sukassa.1176319Lopeta jo pelleily, tiedän kyllä mitä yrität mies
Et tule siinä onnistumaan. Tiedät kyllä, että tämä on just sulle. Sä et tule multa samaan minkäänlaista responssia, kosk3796125Nuori lapualainen nainen tapettu Tampereella?
Työmatkalainen havahtui erikoiseen näkyyn hotellin käytävällä Tampereella – tämä kaikki epäillystä hotellisurmasta tie695850Tampereen "empatiatalu" - "Harvoin näkee mitään näin kajahtanutta"
sanoo kokoomuslainen. Tampereen kaupunginvaltuuston maanantain kokouksessa käsiteltävä Tampereen uusi hyvinvointisuunni3443952Lidl teki sen mistä puhuin jo vuosikymmen sitten
Eli asiakkaat saavat nyt "skannata" ostoksensa keräilyvaiheessa omalla älypuhelimellaan, jolloin ei tarvitse mitään eril1452355Ukraina, unohtui korona - Grönlanti, unohtu Ukraina
Vinot silmät, unohtui Suomen valtiontalouden turmeleminen.42335Orpo pihalla kuin lumiukko
Onneksi pääministerimme ei ole ulkopolitiikassa päättäjiemme kärki. Hänellä on täysin lapsellisia luuloja Trumpin ja USA1171393- 121221
- 1821052
- 59877