Tajusin tänään äärettömän paradoksin

Anonyymi-ap

Olemme ymmärtäneet numerot väärin.
Jos laitamme numerot 1,2 3 ... peräkkäin, niin ykkösestä kakkoseen on matkaa vain pollet ja kakkosesta kolmoseen vain yksi kolmasosa.
Luku yksi on suurin luku, kaikki muut luvu ovat ykköstä pienempiä. Näin ajateltuna äärellisyys suppenee, seikka joka tekee mahdolliseksi sen, että minuutissa voi käydä kaikissa äärettömän hotellin huoneissa. Matka nollasta on ratkaiseva, koska aika ei muutu mentäessä seuraavaan pisteeseen on väli kuljettava nopeammin.

15

150

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      ...joten matka on lyhempi.

    • Anonyymi

      Matka nollasta ykköseen on siis pisin, se on käytännössä ääretön. Muut matkat ovat tästä vain osa.

      • Anonyymi

        KeKxD Paljonko on esim. kolmasosa äärettömästä?


      • Anonyymi
        Anonyymi kirjoitti:

        KeKxD Paljonko on esim. kolmasosa äärettömästä?

        Jos ketjussa on ääretön määrä alkioita, niin otetaan alusta lähtien aina kaksi aökiora pois ja jätetään yksi, niin saadaan uusi ketju.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos ketjussa on ääretön määrä alkioita, niin otetaan alusta lähtien aina kaksi aökiora pois ja jätetään yksi, niin saadaan uusi ketju.

        Mutta paljonko on kolmasosa äärettömästä?


    • Anonyymi

      "Luku yksi on suurin luku,"

      Yhden ja nollan välinen matka reaalilukuna eli erotuksen itseisarvo on yksi. Samoin yhden ja kahden. Ja kolmen ja kahden. Jne.

      Reaalilukujen määrä jokaisella näistä ja millä tahansa reaalilukujen välillä on kylläkin ääretön, mutta se ei ole näiden lukujen etäisyys.

    • Anonyymi

      Hekkone, määritellään funktio että f(n) = 1/(n 1), niin tässä on ilmeisesti se mitä kuvailit. Joo-o, f on aidosti vähenevä funktio joka saa suurimman arvonsa arvolla 1.
      Mikäs olikaan se mitä halusit tästä sanoa

    • Anonyymi

      Olet ymmärtänyt numerot väärin. Jokainen numero on oma yksittäinen määrä tai arvo. Numeroiden välisillä matemaattisilla suhteilla ei ole merkitystä käytännössä, eikä niiden avulla voi käydä "minuutissa äärettömän hotellin huoneissa". Mutta sinänsä mielenkiintoista matemaattista kikkailua, vaikka jääkin vain verbaaliselle tasolle.

    • Anonyymi

      "Jos laitamme numerot 1,2 3 ... peräkkäin, niin ykkösestä kakkoseen on matkaa vain pollet ja kakkosesta kolmoseen vain yksi kolmasosa."

      Hienoa, olet alkanut ymmärtää jakolaskun perusteita! Jatka samaan tahtiin.
      Tsempiä!

    • Anonyymi

      Vitsialoitushan tämä selvästi on, mutta pureksitaanpa silti tuota ehdotusta hieman. Päästäänkö sillä tosiaan eroon äärettömyydestä?

      Aloittajan "ongelma" siis on ilmeisesti, että kun kokonaisluvut ovat luontevasti aina samalla etäisyydellä seuraavasta ja edellisestä, niin "viimeinen" luku olisi näinollen äärettömän kaukana. (Ei nyt takerruta siihen pikkuseikkaan, ettei tuollaista "viimeistä" lukua oikeasti ole.)

      Ja ehdotus "ongelman" "ratkaisuksi" olisi siis, että lukujonon häntäpäätä tiivistettäisiin, niin että ykkönen (ja nolla?) pysyvät siellä missä ovatkin, mutta loput numerot ovat aina vain lähempänä toisiaan:
      kakkonen on kahdesosan (eli puolikkaan) päässä ykkösestä, kolmonen on kolmasosan päässä kakkosesta, nelonen neljäsosan päässä kolmosesta, ja niin edelleen.

      Tuosta voidaan näppärästi summakaavalla laskea, että luvun n sijainti olisi siis 1 1/2 1/3 ... 1/n, mikä on paljon lähempänä nollaa kuin luvun n perinteinen sijainti (n). Mahtavaa!
      Kun luvut tungetaan näin tiiviisti yhteen, ne varmastikin mahtuvat äärelliseen tilaan, eikös? Mihin siis tuo mystinen "viimeinen" luku osuu? Tai siis järkevämmin kysyttynä, mihin tuo lukujono 1 1/2 1/3 ... suppenee?

      Ja vastaushan on: ei se suppene. Äärettömyyteen joudutaan silti. Tuo on harmoninen sarja, jonka summa on ääretön. "Viimeinen" luku päätyy edelleen äärettömän kauas nollasta, vaikka jokainen äärellinen luku saikin uuden paikan huomattavasti lähempää nollaa. Tämä "nerokas" idea ei siis sittenkään ratkaissut aloittajan "vakavaa" ongelmaa.

    • Anonyymi

      Jotain hämärää tulee mieleen kompleksiluvuista 1/(1-z) ja 1/(z-1), joilla molemmilla on ääretön kohta arvolla z=1 j0. Sisäpuoli kuvautuu ulkopuoleksi yksikköympyrässä?

    • Anonyymi

      Ainakin ketjun idioottien lukumäärä on suuri joskaan ei liene ääretön.

      • Anonyymi

        Miten suuri?


      • Anonyymi
        Anonyymi kirjoitti:

        Miten suuri?

        n 1


      • Anonyymi
        Anonyymi kirjoitti:

        n 1

        n 2, laske vaan itsesikin.


    Ketjusta on poistettu 2 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ikävöin sinua kokoyön!

      En halua odottaa, että voisin näyttää sinulle kuinka paljon rakastan sinua. Toivon, että uskot, että olen varsin hullun
      Ikävä
      62
      4469
    2. KALAJOEN UIMAVALVONTA

      https://www.kalajokiseutu.fi/artikkeli/ei-tulisi-mieleenkaan-jattaa-pienta-yksinaan-hiekkasarkkien-valvomattomalla-uimar
      Kalajoki
      158
      3361
    3. Kadonnut poika hukkunut lietteeseen mitä kalajoella nyt on?

      Jätelautta ajautunut merelle ja lapsi uponnut jätelautan alle?
      Kalajoki
      58
      2677
    4. Jos sinä olisit pyrkimässä elämääni takaisin

      Arvelisin sen johtuvan siitä, että olisit taas polttanut jonkun sillan takanasi. Ei taida löytyä enää kyliltä naista, jo
      Tunteet
      49
      2594
    5. Hukkuneet pojat kalajoella pakolaisia?

      Eivät osanneet suomea nimittäin.
      Maailman menoa
      135
      2517
    6. Älä mahdollisesti ota itseesi

      En voinut tietää. Sitäpaitsi.. niin
      Ikävä
      24
      1903
    7. Joku hukkui Hyrynsalmella?

      Oliko mökkiläinen taas?
      Hyrynsalmi
      24
      1721
    8. Ota nainen yhteyttä ja tee Tikusta asiaa?

      Niin sitten minä teen Takusta asiaa.
      Ikävä
      30
      1636
    9. Mitä sinä mietit

      Mies?
      Ikävä
      174
      1590
    10. Metsästysmökki

      Metsästyskortti saapui. Lisäksi metsästysmökki varata!
      Kuhmo
      38
      1293
    Aihe