realization, sample function

Anonyymi-ap

Stokastinen prosessi X(t). t on indeksi ja X(t) on indeksin t osoittama satunnaismuuttuja. Se kuvaa todennäköisyysavaruuden (M,S,p) esim. reaaliakselille jolla on määriteltyt Borel-joukot. S on jokin M.n nosajoukkojen muodostama sigma-algebra. Kaikki satunnaismuuttujat Xt) siis kuvaavat M -> R siten että Borel-joukkojen alkukuvat M-avaruufdessa kuuluvat sigmarenkaaseen S. Indeksijoukko voi olla esim. diskreetti (t1,t2,...) tai jatkuva, esin. (0 <= t <= T)

Useissa oppikirjoissa (ja esim. engl. Wikipediassa) sanotaan sitten, että tuo prosessi voidaan ymmärtää kahden muuttujan funktiona X(t,s). Siis kullakin arvolla t satunnaismuuttuja X(t, ) kuvaa M -> R ja ja jos valitaan tietty s niin X( , s) kuvaa indeksijoukon R:ään.Tässsä siis sama M:n alkio s kuvautuu arvoksi X(t,s) kullakin t:n arvolla. Tätä funktiota kutsutaan nimellä "realisaatio" (myös "sample function").

Mutta onko määritelmä järkevä? Otetaan prosessi jossa X(t) = X kaikilla indeksin t arvoilla eli kyseessä on joukko identtisesti jakautuneita satunnaismuuttujia. Tällöin jokainen niistä kuvaa tietyn valitun alkion s samalla reaaliluvulle X(s).Esim. nopanheittoa kuvaavan prosessin reaalisaatiot olisivat (1,1,1,....), (2,2,2,...) ...(6,6,6,...).

Mutta eikös myös vaikkapa (1,6,4,4,2,4....) ole tuon prosessiun realisaatio? Tätä ei kuitenkaaan saada aikaan yllä kuvatulla tavalla!

8

298

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Jos X(t) = X on yksi ja sama satunnaismuuttuja kaikilla t, niin siinä ei ole kuin yksi nopanheitto. Pitää olla eri satunnaismuuttujat X_1, X_2, ..., jotta kuvastetaan sitä tilannetta, että heitetään uudelleen joka kerta.

      • Anonyymi

        Onhan siinä useita nopanheittoja. Jokaiselle t on X(t) = X. Ja jos valitaan tietty tn-avaruuden s, esim. se, joka antaa tuloksen 5 eli X(s) = 5 niin X(t,s) = X(s) = 5 kaikilla arvoilla t. Ja realisaatio on
        5,5,5,...


      • Anonyymi
        Anonyymi kirjoitti:

        Onhan siinä useita nopanheittoja. Jokaiselle t on X(t) = X. Ja jos valitaan tietty tn-avaruuden s, esim. se, joka antaa tuloksen 5 eli X(s) = 5 niin X(t,s) = X(s) = 5 kaikilla arvoilla t. Ja realisaatio on
        5,5,5,...

        Mitä ne muut nopanheitot on, jos sinulla on vain yksi satunnaismuuttuja X? Ei niitä ole, vaan silloin luetaan aina sen yhden ja saman nopan arvo kaikilla t.


    • Anonyymi

      Et näytä ymmärtävän tekstiäni. Kyllä satunnaismuuttujia on useita: X(1), X(2),....
      Heitolla i on satunnaismuuttuja X(i). Ne vain jakautuvat identtisest:

      P(X(i) = j ) (1 <= j <= 6) = 1/6 = P(X(k) = j (k =/ i)

      Kukin X(i) on kuvaus jostain tn-avaruudesta T -> R.
      Jos s on T:n alkio niin se kuvautuu R:n alkiolle X(i,s) = X(i) (s) kaikissa kuvauksissa X(i). Mutta nämä kuvaukset ovat samoja, X(i) (s) = X(k) (s).

      • Anonyymi

        No eihän ne kuvaukset sitten välttämättä ole samoja, jos X(i) != X(k).


      • Anonyymi
        Anonyymi kirjoitti:

        No eihän ne kuvaukset sitten välttämättä ole samoja, jos X(i) != X(k).

        Tai no joo, onhan ne kuvauksina samat, jos oletetaan että tn. avaruus on {1,2,3,4,5,6} ja X(s) = s. Mutta jos halutaan mallintaa useaa eri nopan heittoa, niin siinä on lähtöjään oletettava että joka t:n arvolla on oma satunnaismuuttujansa. Eiväthän ne voi olla riippumattomat, jos satunnaismuuttujat ovat täysin identtiset.

        Eli nämä kaksi prosessia ovat prosesseina erit, vaikka niissä jokainen satunnaismuuttuja onkin yhtäsuuri. Täällä https://web.ma.utexas.edu/users/mks/M358KInstr/RandomVariables.pdf sanottu näin:

        "
        Using the same variable (in this case, height) but different
        random processes (in this case, choosing from different populations) gives different
        random variables.
        "


      • Anonyymi
        Anonyymi kirjoitti:

        Tai no joo, onhan ne kuvauksina samat, jos oletetaan että tn. avaruus on {1,2,3,4,5,6} ja X(s) = s. Mutta jos halutaan mallintaa useaa eri nopan heittoa, niin siinä on lähtöjään oletettava että joka t:n arvolla on oma satunnaismuuttujansa. Eiväthän ne voi olla riippumattomat, jos satunnaismuuttujat ovat täysin identtiset.

        Eli nämä kaksi prosessia ovat prosesseina erit, vaikka niissä jokainen satunnaismuuttuja onkin yhtäsuuri. Täällä https://web.ma.utexas.edu/users/mks/M358KInstr/RandomVariables.pdf sanottu näin:

        "
        Using the same variable (in this case, height) but different
        random processes (in this case, choosing from different populations) gives different
        random variables.
        "

        Aika kehno esitys tuo mihin viittasit.
        Satunnaismuuttuja on yksinkertaisesti sellainen funktio joka kuvaa M -> S tavalla jonka aloituksessa esitin (sigma-algebra, Borel-joukot). Ei siinä sinänsä ole mitään "satunnaista", ihan tavallinen fuktio se on.
        termi "satunnainen" tulee siitä, että M on mitta-avaruus jossa on määritelty todennäköisyysmitta p.
        P(X <= x) = p( (s l X(s) <= x)
        Stokastinen prosessi taas on joukko satunnaismuuttujia X(t,s) = X(t) (s). Jos siis jokaisella t:n arvolla X(t) on sama muuttuja on sillä myös sama arvo tietyssä M:n pisteessä s.

        Tuo arvostelemani määritelmä esiintyy varsin monessa oppikirjassa.Mutta esim. varsin perusteellinen ja matemaattinen teos
        Achim Klenke: Probability Theory (A Comprehensive Course) ei mainitse käsittetitä "realization" tai "sample function" lainkaan. Olisikohan syynä juuri tuon käsitteen sekavuus?


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Trump muka öljyn takia Venezuelaan? Pelkää mustamaalausta

      Kertokaapa mistä tuollainen uutisankka on saanut alkunsta? Näyttäkääpä ne alkuperäiset lähteet, minä en löytänyt mitään
      Maailman menoa
      228
      19245
    2. Kun Arman Alizad puolusti hiihtäjä Vilma Nissilää sanomalla

      "älä välitä sekopäistä Vilma", ja kun siitä kerrottiin täällä, niin sekopäinen mukasuvaitsevainen teki siitä valituksen
      Maailman menoa
      96
      4164
    3. Lataus pakkaskelissä

      En olisi koskaan ostanut sähköautoa jos olisin tajunnut että ne eivät lataa pakkasissa suurteholatauksella vaan istut tu
      Hybridi- ja sähköautot
      73
      2643
    4. Kun väestö ikääntyy ja veronmaksajat vähenee, mitä sitten vasemmistolaiset?

      Maahanmuutto ei vaan ole ratkaisu väestön ikääntymiseen. Maahanmuutto lykkää ja hidastaa väestön ikääntymistä ja työv
      Maailman menoa
      48
      2153
    5. Temutatko ?

      Ostatko kiinalaisista verkkokaupoista halpaa tavaraa tai vaatteita ja miksi? Siksi että on kiva ostaa kun halvalla saa?
      60 plus
      190
      1785
    6. Martinalta vahva viesti

      "Suuret unelmat venyttävät sinua, pelottavat vähän ja vievät mukavuusalueen ulkopuolelle. Juuri siellä kasvu tapahtuu. J
      Kotimaiset julkkisjuorut
      289
      1622
    7. Miksei Trump ole kiinnostunut Suomen valloittamisesta?

      Täällähän on enemmän turvetta kuin Norjalla öljyä. Eikö Ttump ole turvenuija?
      Maailman menoa
      73
      1561
    8. Jos mies olet oikeasti...?

      Kiinnostunut... Pyydä mut kunnolla treffeille ja laita itsesi likoon. En voi antaa sydäntä jos sinä olet epävarma ja eh
      Ikävä
      135
      1540
    9. Akateemikko Martti Koskenniemi vertaa Trumpia Putiniin

      "-Suomalaisena on syytä olla huolissaan siitä, että Yhdysvallat näin vahvistaa 1800-luvun alkupuolella julistamansa etup
      Maailman menoa
      168
      1494
    10. Esko Eerikäinen paljastaa järkyttävän muiston lapsuudesta - Isä löytyi alastomana slummista

      Esko Eerikäisen tausta on monikulttuurinen, hän muutti vain 10-vuotiaana yksin kotoaan Kolumbiasta isovanhempiensa luo S
      Suomalaiset julkkikset
      14
      1384
    Aihe