realization, sample function

Anonyymi-ap

Stokastinen prosessi X(t). t on indeksi ja X(t) on indeksin t osoittama satunnaismuuttuja. Se kuvaa todennäköisyysavaruuden (M,S,p) esim. reaaliakselille jolla on määriteltyt Borel-joukot. S on jokin M.n nosajoukkojen muodostama sigma-algebra. Kaikki satunnaismuuttujat Xt) siis kuvaavat M -> R siten että Borel-joukkojen alkukuvat M-avaruufdessa kuuluvat sigmarenkaaseen S. Indeksijoukko voi olla esim. diskreetti (t1,t2,...) tai jatkuva, esin. (0 <= t <= T)

Useissa oppikirjoissa (ja esim. engl. Wikipediassa) sanotaan sitten, että tuo prosessi voidaan ymmärtää kahden muuttujan funktiona X(t,s). Siis kullakin arvolla t satunnaismuuttuja X(t, ) kuvaa M -> R ja ja jos valitaan tietty s niin X( , s) kuvaa indeksijoukon R:ään.Tässsä siis sama M:n alkio s kuvautuu arvoksi X(t,s) kullakin t:n arvolla. Tätä funktiota kutsutaan nimellä "realisaatio" (myös "sample function").

Mutta onko määritelmä järkevä? Otetaan prosessi jossa X(t) = X kaikilla indeksin t arvoilla eli kyseessä on joukko identtisesti jakautuneita satunnaismuuttujia. Tällöin jokainen niistä kuvaa tietyn valitun alkion s samalla reaaliluvulle X(s).Esim. nopanheittoa kuvaavan prosessin reaalisaatiot olisivat (1,1,1,....), (2,2,2,...) ...(6,6,6,...).

Mutta eikös myös vaikkapa (1,6,4,4,2,4....) ole tuon prosessiun realisaatio? Tätä ei kuitenkaaan saada aikaan yllä kuvatulla tavalla!

8

253

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Jos X(t) = X on yksi ja sama satunnaismuuttuja kaikilla t, niin siinä ei ole kuin yksi nopanheitto. Pitää olla eri satunnaismuuttujat X_1, X_2, ..., jotta kuvastetaan sitä tilannetta, että heitetään uudelleen joka kerta.

      • Anonyymi

        Onhan siinä useita nopanheittoja. Jokaiselle t on X(t) = X. Ja jos valitaan tietty tn-avaruuden s, esim. se, joka antaa tuloksen 5 eli X(s) = 5 niin X(t,s) = X(s) = 5 kaikilla arvoilla t. Ja realisaatio on
        5,5,5,...


      • Anonyymi
        Anonyymi kirjoitti:

        Onhan siinä useita nopanheittoja. Jokaiselle t on X(t) = X. Ja jos valitaan tietty tn-avaruuden s, esim. se, joka antaa tuloksen 5 eli X(s) = 5 niin X(t,s) = X(s) = 5 kaikilla arvoilla t. Ja realisaatio on
        5,5,5,...

        Mitä ne muut nopanheitot on, jos sinulla on vain yksi satunnaismuuttuja X? Ei niitä ole, vaan silloin luetaan aina sen yhden ja saman nopan arvo kaikilla t.


    • Anonyymi

      Et näytä ymmärtävän tekstiäni. Kyllä satunnaismuuttujia on useita: X(1), X(2),....
      Heitolla i on satunnaismuuttuja X(i). Ne vain jakautuvat identtisest:

      P(X(i) = j ) (1 <= j <= 6) = 1/6 = P(X(k) = j (k =/ i)

      Kukin X(i) on kuvaus jostain tn-avaruudesta T -> R.
      Jos s on T:n alkio niin se kuvautuu R:n alkiolle X(i,s) = X(i) (s) kaikissa kuvauksissa X(i). Mutta nämä kuvaukset ovat samoja, X(i) (s) = X(k) (s).

      • Anonyymi

        No eihän ne kuvaukset sitten välttämättä ole samoja, jos X(i) != X(k).


      • Anonyymi
        Anonyymi kirjoitti:

        No eihän ne kuvaukset sitten välttämättä ole samoja, jos X(i) != X(k).

        Tai no joo, onhan ne kuvauksina samat, jos oletetaan että tn. avaruus on {1,2,3,4,5,6} ja X(s) = s. Mutta jos halutaan mallintaa useaa eri nopan heittoa, niin siinä on lähtöjään oletettava että joka t:n arvolla on oma satunnaismuuttujansa. Eiväthän ne voi olla riippumattomat, jos satunnaismuuttujat ovat täysin identtiset.

        Eli nämä kaksi prosessia ovat prosesseina erit, vaikka niissä jokainen satunnaismuuttuja onkin yhtäsuuri. Täällä https://web.ma.utexas.edu/users/mks/M358KInstr/RandomVariables.pdf sanottu näin:

        "
        Using the same variable (in this case, height) but different
        random processes (in this case, choosing from different populations) gives different
        random variables.
        "


      • Anonyymi
        Anonyymi kirjoitti:

        Tai no joo, onhan ne kuvauksina samat, jos oletetaan että tn. avaruus on {1,2,3,4,5,6} ja X(s) = s. Mutta jos halutaan mallintaa useaa eri nopan heittoa, niin siinä on lähtöjään oletettava että joka t:n arvolla on oma satunnaismuuttujansa. Eiväthän ne voi olla riippumattomat, jos satunnaismuuttujat ovat täysin identtiset.

        Eli nämä kaksi prosessia ovat prosesseina erit, vaikka niissä jokainen satunnaismuuttuja onkin yhtäsuuri. Täällä https://web.ma.utexas.edu/users/mks/M358KInstr/RandomVariables.pdf sanottu näin:

        "
        Using the same variable (in this case, height) but different
        random processes (in this case, choosing from different populations) gives different
        random variables.
        "

        Aika kehno esitys tuo mihin viittasit.
        Satunnaismuuttuja on yksinkertaisesti sellainen funktio joka kuvaa M -> S tavalla jonka aloituksessa esitin (sigma-algebra, Borel-joukot). Ei siinä sinänsä ole mitään "satunnaista", ihan tavallinen fuktio se on.
        termi "satunnainen" tulee siitä, että M on mitta-avaruus jossa on määritelty todennäköisyysmitta p.
        P(X <= x) = p( (s l X(s) <= x)
        Stokastinen prosessi taas on joukko satunnaismuuttujia X(t,s) = X(t) (s). Jos siis jokaisella t:n arvolla X(t) on sama muuttuja on sillä myös sama arvo tietyssä M:n pisteessä s.

        Tuo arvostelemani määritelmä esiintyy varsin monessa oppikirjassa.Mutta esim. varsin perusteellinen ja matemaattinen teos
        Achim Klenke: Probability Theory (A Comprehensive Course) ei mainitse käsittetitä "realization" tai "sample function" lainkaan. Olisikohan syynä juuri tuon käsitteen sekavuus?


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ikävöin sinua kokoyön!

      En halua odottaa, että voisin näyttää sinulle kuinka paljon rakastan sinua. Toivon, että uskot, että olen varsin hullun
      Ikävä
      61
      4358
    2. KALAJOEN UIMAVALVONTA

      https://www.kalajokiseutu.fi/artikkeli/ei-tulisi-mieleenkaan-jattaa-pienta-yksinaan-hiekkasarkkien-valvomattomalla-uimar
      Kalajoki
      144
      3110
    3. Jos sinä olisit pyrkimässä elämääni takaisin

      Arvelisin sen johtuvan siitä, että olisit taas polttanut jonkun sillan takanasi. Ei taida löytyä enää kyliltä naista, jo
      Tunteet
      47
      2418
    4. Kadonnut poika hukkunut lietteeseen mitä kalajoella nyt on?

      Jätelautta ajautunut merelle ja lapsi uponnut jätelautan alle?
      Kalajoki
      46
      2343
    5. Hukkuneet pojat kalajoella pakolaisia?

      Eivät osanneet suomea nimittäin.
      Maailman menoa
      98
      1985
    6. Älä mahdollisesti ota itseesi

      En voinut tietää. Sitäpaitsi.. niin
      Ikävä
      24
      1883
    7. Ota nainen yhteyttä ja tee Tikusta asiaa?

      Niin sitten minä teen Takusta asiaa.
      Ikävä
      28
      1596
    8. Joku hukkui Hyrynsalmella?

      Oliko mökkiläinen taas?
      Hyrynsalmi
      22
      1584
    9. Mitä sinä mietit

      Mies?
      Ikävä
      150
      1411
    10. Metsästysmökki

      Metsästyskortti saapui. Lisäksi metsästysmökki varata!
      Kuhmo
      34
      1233
    Aihe