Pyrstötähti lähestyy maapalloa pitkin rataa, jota voidaan tarkastelujakson aikana pitää suorana. Mittausten perusteella pyrstötähden sijainti valitussa koordinaatistossa oli eräänä hetkenä P(−1,−5,4) ja hiukan myöhemmin Q(0,−3,3.5). Maapallon keskipiste sijaitsee koordinaatiston origossa ja maan säteen lukuarvo on 1. Mittayksikkönä käytetään siis maapallon sädettä.
Miten läheltä maapallon pintaa pyrstötähti kulkee?
Miten tällänen ratkastais??
Miten tämmöinen lasketaan?
9
147
Vastaukset
- Anonyymi
En osaa laskea tuollaisia, mutta herää kysymys voiko laskea kun ei tiedetä alkunopeutta pisteessä Q.
Onko tuo tehtävä jostain kurssilta, eli ratkaistavissa? - Anonyymi
Ensiksi sovitetaan suora pisteiden P ja Q kautta. Sitten lasketaan origon etäisyys suorasta.
Helppoa kuin heinänteko. - Anonyymi
Rata on suora R(t) =
(1-t) ( -1, - 5, 4) + t (0, -3, 3.5) =
(t-1, 2t - 5, - 0.5 t plus 4)
Tark.
R(0) = (-1,-5,4) ja R(1)= (0, - 3, 3.5)
Laske nyt origon etäisyys tuosta suorasta. Esim. niin että se on R:n pituuden
lR(t)l pienin arvo.- Anonyymi
Jatkuu.
Tuosta puuttui taas plus-merkki. P.o.: R(t) = (1-t) (-1,-5,4) plus t(0,-3, 3.5)
Voit myös määrätä t:n niin, että vektori
(0 - (-1) , - 3 - (-5), 3.5-4) = (1,2, - 1/2) on nkohtisuorassa vektoria R(t) vastaan.
Kummallakin tavalla saadaan t = 52/21.
Nyt lasket pituuden l R(52/21) l . Olkoon tämä pituus r(52/21). Pyrstötähden etäisyys maanpinnasta on lyhyimmillään r(52/21) - 1. - Anonyymi
Yksinkertainen yhtälö on R(t)*R'(t)=0 missä * on pistetulo ja R'(t) on derivaatta parametrin t suhteen.
- Anonyymi
Anonyymi kirjoitti:
Jatkuu.
Tuosta puuttui taas plus-merkki. P.o.: R(t) = (1-t) (-1,-5,4) plus t(0,-3, 3.5)
Voit myös määrätä t:n niin, että vektori
(0 - (-1) , - 3 - (-5), 3.5-4) = (1,2, - 1/2) on nkohtisuorassa vektoria R(t) vastaan.
Kummallakin tavalla saadaan t = 52/21.
Nyt lasket pituuden l R(52/21) l . Olkoon tämä pituus r(52/21). Pyrstötähden etäisyys maanpinnasta on lyhyimmillään r(52/21) - 1.Jatkuu /2.
(A, B) on vektoreitten A ja B sisätulo ("pistetulo")
l R(t) l saa minimin samassa pisteessä t kuin l R(t) l^2
d/dt l R(t) l^2 = d/dt (R(t) , R(t) ) = (R'(t) , R(t) ) + ( R(t) , R' (t)) = 2 (R'(t) , R(t) ) = 0
R'(t) = (1,2, - 1/2)
(R'(t) , R(t) ) = t-1 plus 4t - 10 plus t/4 - 2 = 5 1/4 t - 13 = 0
t = 52/21
Geometrisesti ajatellen R'(t) on R(t)-käyrän tangenttivektori ja koska R(t) on nyt suora on sen tangenttivektori suoran itsensä suuntainen. Maapallon keskipistettä (origo) lähinnä oleva suoran piste on se jossa tangenttivektori R'(t)on kohtisuorassa suoran paikkavektorisa R(t) vastaan eli (R'(t) , R(t) ) = 0 - Anonyymi
Anonyymi kirjoitti:
Jatkuu /2.
(A, B) on vektoreitten A ja B sisätulo ("pistetulo")
l R(t) l saa minimin samassa pisteessä t kuin l R(t) l^2
d/dt l R(t) l^2 = d/dt (R(t) , R(t) ) = (R'(t) , R(t) ) ( R(t) , R' (t)) = 2 (R'(t) , R(t) ) = 0
R'(t) = (1,2, - 1/2)
(R'(t) , R(t) ) = t-1 plus 4t - 10 plus t/4 - 2 = 5 1/4 t - 13 = 0
t = 52/21
Geometrisesti ajatellen R'(t) on R(t)-käyrän tangenttivektori ja koska R(t) on nyt suora on sen tangenttivektori suoran itsensä suuntainen. Maapallon keskipistettä (origo) lähinnä oleva suoran piste on se jossa tangenttivektori R'(t)on kohtisuorassa suoran paikkavektorisa R(t) vastaan eli (R'(t) , R(t) ) = 0Taas jäi yksi plussa pois. Saamari etteivät korjaa tätä vikaa!
P.O. ... d/dt (R(t),R(t) ) = (R'(t) , R(t) ) plus (R(t), R'(t) ) ...
- Anonyymi
vektoreiden pistetulon avulla
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis
Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu2712370Tässä totuus jälleensyntymisestä - voit yllättyä
Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä2991279- 1081201
En kadu sitä, että kohtasin hänet
mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n831191Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..
...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n581135Noniin rakas
Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi811096- 44952
Helena Koivu : Ja kohta mennään taas
Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi67887Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."
Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa21848- 33757