integrointivisa

Anonyymi-ap

Integrointivisa, 5 tehtävää, kuka laskee eniten kynällä ja paperilla oikein on voittanut. Ratkaisut ovat olemassa, ja ne on valittu siten että ne ovat reaaliarvoisia. Wolfram alpha antaa samat vihjeet kun tässä, mutta ei tee tehtäviä loppuun asti, ellette ole ostaneet pro-version. Kaikki välivaiheet esiin, jotta tiedetään että ette ole kopioineet vain ratkaisun jostakin.

∫ ln(x^2+1)dx, vihje: osittaisintegroinnilla suoraan

∫ 1/(cos(x)-sin(x)) dx , vihje: substituutiolla t= tan(x/2), jonka jälkeen osamurtoihin jako

∫ xsin(ln(x)) dx, vihje: substituutiolla x = e^t, käytä sen jälkeen osittaisintegrointia muutaman kerran

∫x(e^-x) sin(x)dx, vihje: käytä osittaisintegrointia suoraan
_____________
∫√9x^2 - 3x +1 dx, vihje sievennä neliöksi, tee sopiva substituutio, ja laske

20

1082

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Koulussa on taidettu taas antaa kotitehtäviä.

      • Anonyymi

        😍😍😍😋😋😋😋😍😍😍

        🔞 ­­­N­y­­­m­­­f­­­o­­m­­a­­­a­­n­­i -> https://ye.pe/finngirl21#17849444t

        🔞💋❤️💋❤️💋🔞💋❤️💋❤️💋🔞


    • Anonyymi

      Ei ole, taidan sitten postata tämän muualle, koska täällä on törppöä väkeä.

      • Anonyymi

        Niin on parasta.


    • Anonyymi

      Näillä palstoilla päivystää paranoidi henkilö joka luulee ettei suomeen tule enää kunnon insinöörejä kun saavat täältä vastaukset koulutehtäviinsä.

    • Anonyymi

      Lasken vaan ton viimeisen, kun sitä olen pelkästään pähkäillyt ja silläkin taitaa tämän visan voittaa: https://aijaa.com/ZsAy2F

      • Anonyymi

        Loppuun pitää vielä lisätä vakio C.


    • Anonyymi

      Integraalimerkin asemesta kirjoitan:S

      S(ln(x^2+1) dx = x * ln(x^2+1) - S (2x^2/(x^2+1) dx
      S(x^2/(x^2+1) dx = S((1+x^2)/(1+x^2) - 1/(1+x^2)) dx = S((1- 1/(1+x^2)) dx =
      x - S (d(arctan(x)) = x-arctan(x)

      Kysytty integraalifunktio on siis
      x*ln(1+x^2) - 2x + 2 arctan(x) + C missä C on integroimisvakio.
      Tuon voi tarkastusmielessä derivoida ja tulos on juuri tuo ln(1+x^2).

      • Anonyymi

        Jatkoa: 3. tehtävä.
        x=e^t ja dx = e^t dt
        S(x sin(ln(x))) dx = S(e^(2t) * sin(t)) dt = S(e^(2t) d (- cos(t)) =
        - e^(2t) cos(t) + 2 S (e^(2t) cos(t)) dt =
        - e^(2t) cos(t) + 2 e^(2t) sin(t) - 4 S ( e^(2t) sin(t)) dt

        Saadaan että 5 S(e^(2t) sin(t)) dt = - e^(2t) cos(t) + 2 e^(2t) sin(t) joten
        S(x sin(ln(x))) dx = 1/5 ( - x^2 cos(ln(x)) + 2 x^2 sin(ln(x))) + C
        Derivoimalla tämä saadaan
        1/5*( - 2x cos(ln(x)) + x^2 sin(ln(x)) * 1/x + 4 x sin(ln(x)) + 2 x^2 cos(ln(x))* 1/x =
        x sin(ln(x)) kuten pitääkin.


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkoa: 3. tehtävä.
        x=e^t ja dx = e^t dt
        S(x sin(ln(x))) dx = S(e^(2t) * sin(t)) dt = S(e^(2t) d (- cos(t)) =
        - e^(2t) cos(t) 2 S (e^(2t) cos(t)) dt =
        - e^(2t) cos(t) 2 e^(2t) sin(t) - 4 S ( e^(2t) sin(t)) dt

        Saadaan että 5 S(e^(2t) sin(t)) dt = - e^(2t) cos(t) 2 e^(2t) sin(t) joten
        S(x sin(ln(x))) dx = 1/5 ( - x^2 cos(ln(x)) 2 x^2 sin(ln(x))) C
        Derivoimalla tämä saadaan
        1/5*( - 2x cos(ln(x)) x^2 sin(ln(x)) * 1/x 4 x sin(ln(x)) 2 x^2 cos(ln(x))* 1/x =
        x sin(ln(x)) kuten pitääkin.

        Jatkoa:4. tehtävä.
        Laskin integraalin kahdessa osassa.
        S1 = S(x e^x sin(x)) dx ja S2 = S (x^2 sin(x) ) dx Kysytty integraali on S1 - S2.

        Osittaisintegroinnilla saadaan
        2 * S1 = e^x (x sin(x) - x cos(x) + cos(x) )
        S2 = (2-x^2) cos(x) + 2x sin(x)
        Kysytty integraali on

        (1/2 x e^x - 2x) sin(x) + (- 1/2 x e^x + 1/2 e^x + x^2 - 2) cos(x)
        Lukija voi derivoimalla tarkastaa.
        Kaikkia välivaiheita en viitsinyt kirjoittaa, turhan vaivalloista. Ja selväpiirteistä osittaisintegrointiahan nuo S1 ja S2 ovat.


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkoa:4. tehtävä.
        Laskin integraalin kahdessa osassa.
        S1 = S(x e^x sin(x)) dx ja S2 = S (x^2 sin(x) ) dx Kysytty integraali on S1 - S2.

        Osittaisintegroinnilla saadaan
        2 * S1 = e^x (x sin(x) - x cos(x) cos(x) )
        S2 = (2-x^2) cos(x) 2x sin(x)
        Kysytty integraali on

        (1/2 x e^x - 2x) sin(x) (- 1/2 x e^x 1/2 e^x x^2 - 2) cos(x)
        Lukija voi derivoimalla tarkastaa.
        Kaikkia välivaiheita en viitsinyt kirjoittaa, turhan vaivalloista. Ja selväpiirteistä osittaisintegrointiahan nuo S1 ja S2 ovat.

        ∫x(e^-x) sin(x)dx........, eli onko tuo lauseke siis: ∫((e^x)-x)*x*sin(x)dx ?

        Olen yrittänyt laskea tätä : ∫(e^(-x))*x*sin(x)dx, enkä pysy niissä osareissa mukana, rupee päätä särkeen....Tämä minulta jäi laskematta, neljään pääsin...


      • Anonyymi
        Anonyymi kirjoitti:

        ∫x(e^-x) sin(x)dx........, eli onko tuo lauseke siis: ∫((e^x)-x)*x*sin(x)dx ?

        Olen yrittänyt laskea tätä : ∫(e^(-x))*x*sin(x)dx, enkä pysy niissä osareissa mukana, rupee päätä särkeen....Tämä minulta jäi laskematta, neljään pääsin...

        Olen lukenut väärin tehtävän. Integroin tuota kirjoittamaani lauseketta. No,olihan siinäkin harrastelua!
        Tehtävä näkyy olevankin integroida funktio
        x*e^(- x) sin(x) kuten kirjoitit.


      • Anonyymi
        Anonyymi kirjoitti:

        Olen lukenut väärin tehtävän. Integroin tuota kirjoittamaani lauseketta. No,olihan siinäkin harrastelua!
        Tehtävä näkyy olevankin integroida funktio
        x*e^(- x) sin(x) kuten kirjoitit.

        Tämäkin ratkeaa osittaisintegroinnilla.Vähän alkua.

        S(x e^(-x) sin(x)) dx = - S(x e^(-x) d(cos(x)) = - x e^(-x) cos(x) + S(cos(x) (e^(-x) - x e^(-x))dx

        S(cos(x) e^(-x))dx = S(e^(-x) d(sin(x) = e^(-x) sin(x) +S( sin(x) e^(-x))dx =
        e^(-x) sin(x) - S(e^(-x) d(cos(x)) = e^(-x) sin(x) - e^(-x) cos(x) - S(e^(-x) cos(x)) dx Tästä saadaan
        S(cos(x) e^(-x))dx = 1/2 e^(-x) (sin(x) - cos(x))

        Pitäisi vielä laskea S(cos(x) *x*e^(-x))dx mutta ei nyt ole aikaa. Ja helvetillistä näpyttelyä näidenlausekkeiden kirjoittaminen on!


      • Anonyymi
        Anonyymi kirjoitti:

        Tämäkin ratkeaa osittaisintegroinnilla.Vähän alkua.

        S(x e^(-x) sin(x)) dx = - S(x e^(-x) d(cos(x)) = - x e^(-x) cos(x) S(cos(x) (e^(-x) - x e^(-x))dx

        S(cos(x) e^(-x))dx = S(e^(-x) d(sin(x) = e^(-x) sin(x) S( sin(x) e^(-x))dx =
        e^(-x) sin(x) - S(e^(-x) d(cos(x)) = e^(-x) sin(x) - e^(-x) cos(x) - S(e^(-x) cos(x)) dx Tästä saadaan
        S(cos(x) e^(-x))dx = 1/2 e^(-x) (sin(x) - cos(x))

        Pitäisi vielä laskea S(cos(x) *x*e^(-x))dx mutta ei nyt ole aikaa. Ja helvetillistä näpyttelyä näidenlausekkeiden kirjoittaminen on!

        Itse asiassa kun laskin tuota "väärää" tehtävää niin siellä oli tuo integraala S1.Sijoituksella t = - x tämän oikean tehtävän integraalista saadaan - S1 muuttujana t. Ja tuon integraalinhan olin siis laskenut. Kun laskettuun integraaliin sijoitetaan t:n tilalle - x saadaan haluttu integraalifunktio
        - 1/2 e^(-x) (x sin(x) + x cos(x) + cos(x) ) + C
        Derivoimalla tämä saadaan e^(-x) x sin(x) kuten pitääkin.


      • Anonyymi
        Anonyymi kirjoitti:

        Itse asiassa kun laskin tuota "väärää" tehtävää niin siellä oli tuo integraala S1.Sijoituksella t = - x tämän oikean tehtävän integraalista saadaan - S1 muuttujana t. Ja tuon integraalinhan olin siis laskenut. Kun laskettuun integraaliin sijoitetaan t:n tilalle - x saadaan haluttu integraalifunktio
        - 1/2 e^(-x) (x sin(x) x cos(x) cos(x) ) C
        Derivoimalla tämä saadaan e^(-x) x sin(x) kuten pitääkin.

        Toi sijoitus t=-x on erittäin hyvä idea. Sillä minäkin sen sitten lopulta sain laskettua niillä osareilla, joilla kait pitkin...


    • Anonyymi
    • Anonyymi

      Vaikka se nelonen onkin minulle mahdoton osareilla ratkaista, niin käytetään sitä vihjettä kuitenkin siten, että päätellään mistä funktioryppäistä se integraali koostuu, ja sit kaivetaan se esiin derivoimalla: https://aijaa.com/m4IiXU

    • Anonyymi

      5. tehtävä.
      (9x^2-3x+1)^(1/2) =( (3x- 1/2)^2 + 3/4)^1/2 =
      ( 3/4 (2 sqrt(3) x - 1/sqrt(3))^2 + 1)^1/2
      = sqrt(3)/2 ((2 sqrt(3) x - 1/sqrt(3))^2 + 1)^1/2
      t = 2 sqrt(3) x - 1/sqrt(3) = 1/sqrt(3) * (6x-1) joten dt = 2 sqrt(3) dx
      Saadaan integraali
      1/4 Int( (1+t^2)^1/2) dt) = 1/8 (t sqrt(1+t^2) + arsinh(t)) + C =
      1/12 * (6x-1) * sqrt(9x^2 - 3x + 1) + 1/8 * arsinh((6x-1) / sqrt(3)) + C

    • Anonyymi

      Olikos ekaa vielä ratkaistu?

      x(ln(x^2+1)-2) + 2arctan(x) + C

      • Anonyymi

        Olihan se ratkaistu. Kommentti 2023-05-10 10:02:36.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Sanna niin nättinä Amsterdamin Business Foorumilla

      Upeasti edustaa taas Suomea ulkomailla meidän kansainvälinen superstaramme. Miksei persuilla ole ketään siedettävän näk
      Maailman menoa
      202
      10515
    2. Stubb jo paljon tunnetumpi kuin kaikki persut yhteensä

      Nyt on aika ottaa mittaa tunnettavuudesta, herrat ja narrit! Joku tuolla toisessa ketjussa väitti, että "persujen rivimi
      Maailman menoa
      48
      9831
    3. Työeläkkeiden maksaminen on lopetettava

      Suomen talous on palkansaajien vuosikausia heikentyneen ostovoiman vuoksi niin kuralla, että palkkasumman jakamisessa ta
      Maailman menoa
      179
      8434
    4. Sofia Virran pahoinpitelyä puolustetaan netissä

      HS soitti Virran pahoinpitelyä puolustaneille https://www.hs.fi/politiikka/art-2000011516353.html
      Maailman menoa
      304
      7888
    5. Purra tekee hyvää työtä, me suomalaiset haluamme että hän jatkaa myös

      seuraavan hallituksen valtiovarainministerinä. Kovina aikoina pitää olla kova.
      Maailman menoa
      193
      6725
    6. Koska Minja Koskela ja Sofia Virta kääntyy islamiin?

      Sekä vihreät että vasurit selvästi pitävät islamista ja muslimeista, varsinkin naiset, joten voidaan olettaaa että nuo k
      Maailman menoa
      90
      6133
    7. Persut hommasivat Suomeen 35 000 pientä lasta v. 2015

      Onko Riikka Purra nyt tavoittelemassa tätä samaa historiallista persujen utopiaa? Purram kaksinaamaisessa pelissä vaadit
      Maailman menoa
      8
      6052
    8. Persu Keskisarja on politiikan Uuno Turhapuro

      Asiantuntija luonnehtii Keskisarjaa Trumpin ajan Turhapuroksi, joka ärsyttää kokoomusta. – Keskisarjan känni-imago j
      Maailman menoa
      67
      5966
    9. Miksi persuilla ei ole firmoja?

      Kuten vasemmisstolaisilla, esim. Sannalla MA\PI. Eikö ole aika erikoista?
      Maailman menoa
      30
      5309
    10. Stubb jo paljon tunnetumpi ja arvostetumpi maailmalla, kuin Marin koskaan

      Stubb tekee sitä työtä mitä pitää, hän ei koreile vaatteilla eikä ole baareissa räkäposkella kuten Marin. Marininhan pit
      Maailman menoa
      103
      5007
    Aihe