integrointivisa

Anonyymi-ap

Integrointivisa, 5 tehtävää, kuka laskee eniten kynällä ja paperilla oikein on voittanut. Ratkaisut ovat olemassa, ja ne on valittu siten että ne ovat reaaliarvoisia. Wolfram alpha antaa samat vihjeet kun tässä, mutta ei tee tehtäviä loppuun asti, ellette ole ostaneet pro-version. Kaikki välivaiheet esiin, jotta tiedetään että ette ole kopioineet vain ratkaisun jostakin.

∫ ln(x^2+1)dx, vihje: osittaisintegroinnilla suoraan

∫ 1/(cos(x)-sin(x)) dx , vihje: substituutiolla t= tan(x/2), jonka jälkeen osamurtoihin jako

∫ xsin(ln(x)) dx, vihje: substituutiolla x = e^t, käytä sen jälkeen osittaisintegrointia muutaman kerran

∫x(e^-x) sin(x)dx, vihje: käytä osittaisintegrointia suoraan
_____________
∫√9x^2 - 3x +1 dx, vihje sievennä neliöksi, tee sopiva substituutio, ja laske

20

1034

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Koulussa on taidettu taas antaa kotitehtäviä.

      • Anonyymi

        😍😍😍😋😋😋😋😍😍😍

        🔞 ­­­N­y­­­m­­­f­­­o­­m­­a­­­a­­n­­i -> https://ye.pe/finngirl21#17849444t

        🔞💋❤️💋❤️💋🔞💋❤️💋❤️💋🔞


    • Anonyymi

      Ei ole, taidan sitten postata tämän muualle, koska täällä on törppöä väkeä.

      • Anonyymi

        Niin on parasta.


    • Anonyymi

      Näillä palstoilla päivystää paranoidi henkilö joka luulee ettei suomeen tule enää kunnon insinöörejä kun saavat täältä vastaukset koulutehtäviinsä.

    • Anonyymi

      Lasken vaan ton viimeisen, kun sitä olen pelkästään pähkäillyt ja silläkin taitaa tämän visan voittaa: https://aijaa.com/ZsAy2F

      • Anonyymi

        Loppuun pitää vielä lisätä vakio C.


    • Anonyymi

      Integraalimerkin asemesta kirjoitan:S

      S(ln(x^2+1) dx = x * ln(x^2+1) - S (2x^2/(x^2+1) dx
      S(x^2/(x^2+1) dx = S((1+x^2)/(1+x^2) - 1/(1+x^2)) dx = S((1- 1/(1+x^2)) dx =
      x - S (d(arctan(x)) = x-arctan(x)

      Kysytty integraalifunktio on siis
      x*ln(1+x^2) - 2x + 2 arctan(x) + C missä C on integroimisvakio.
      Tuon voi tarkastusmielessä derivoida ja tulos on juuri tuo ln(1+x^2).

      • Anonyymi

        Jatkoa: 3. tehtävä.
        x=e^t ja dx = e^t dt
        S(x sin(ln(x))) dx = S(e^(2t) * sin(t)) dt = S(e^(2t) d (- cos(t)) =
        - e^(2t) cos(t) + 2 S (e^(2t) cos(t)) dt =
        - e^(2t) cos(t) + 2 e^(2t) sin(t) - 4 S ( e^(2t) sin(t)) dt

        Saadaan että 5 S(e^(2t) sin(t)) dt = - e^(2t) cos(t) + 2 e^(2t) sin(t) joten
        S(x sin(ln(x))) dx = 1/5 ( - x^2 cos(ln(x)) + 2 x^2 sin(ln(x))) + C
        Derivoimalla tämä saadaan
        1/5*( - 2x cos(ln(x)) + x^2 sin(ln(x)) * 1/x + 4 x sin(ln(x)) + 2 x^2 cos(ln(x))* 1/x =
        x sin(ln(x)) kuten pitääkin.


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkoa: 3. tehtävä.
        x=e^t ja dx = e^t dt
        S(x sin(ln(x))) dx = S(e^(2t) * sin(t)) dt = S(e^(2t) d (- cos(t)) =
        - e^(2t) cos(t) 2 S (e^(2t) cos(t)) dt =
        - e^(2t) cos(t) 2 e^(2t) sin(t) - 4 S ( e^(2t) sin(t)) dt

        Saadaan että 5 S(e^(2t) sin(t)) dt = - e^(2t) cos(t) 2 e^(2t) sin(t) joten
        S(x sin(ln(x))) dx = 1/5 ( - x^2 cos(ln(x)) 2 x^2 sin(ln(x))) C
        Derivoimalla tämä saadaan
        1/5*( - 2x cos(ln(x)) x^2 sin(ln(x)) * 1/x 4 x sin(ln(x)) 2 x^2 cos(ln(x))* 1/x =
        x sin(ln(x)) kuten pitääkin.

        Jatkoa:4. tehtävä.
        Laskin integraalin kahdessa osassa.
        S1 = S(x e^x sin(x)) dx ja S2 = S (x^2 sin(x) ) dx Kysytty integraali on S1 - S2.

        Osittaisintegroinnilla saadaan
        2 * S1 = e^x (x sin(x) - x cos(x) + cos(x) )
        S2 = (2-x^2) cos(x) + 2x sin(x)
        Kysytty integraali on

        (1/2 x e^x - 2x) sin(x) + (- 1/2 x e^x + 1/2 e^x + x^2 - 2) cos(x)
        Lukija voi derivoimalla tarkastaa.
        Kaikkia välivaiheita en viitsinyt kirjoittaa, turhan vaivalloista. Ja selväpiirteistä osittaisintegrointiahan nuo S1 ja S2 ovat.


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkoa:4. tehtävä.
        Laskin integraalin kahdessa osassa.
        S1 = S(x e^x sin(x)) dx ja S2 = S (x^2 sin(x) ) dx Kysytty integraali on S1 - S2.

        Osittaisintegroinnilla saadaan
        2 * S1 = e^x (x sin(x) - x cos(x) cos(x) )
        S2 = (2-x^2) cos(x) 2x sin(x)
        Kysytty integraali on

        (1/2 x e^x - 2x) sin(x) (- 1/2 x e^x 1/2 e^x x^2 - 2) cos(x)
        Lukija voi derivoimalla tarkastaa.
        Kaikkia välivaiheita en viitsinyt kirjoittaa, turhan vaivalloista. Ja selväpiirteistä osittaisintegrointiahan nuo S1 ja S2 ovat.

        ∫x(e^-x) sin(x)dx........, eli onko tuo lauseke siis: ∫((e^x)-x)*x*sin(x)dx ?

        Olen yrittänyt laskea tätä : ∫(e^(-x))*x*sin(x)dx, enkä pysy niissä osareissa mukana, rupee päätä särkeen....Tämä minulta jäi laskematta, neljään pääsin...


      • Anonyymi
        Anonyymi kirjoitti:

        ∫x(e^-x) sin(x)dx........, eli onko tuo lauseke siis: ∫((e^x)-x)*x*sin(x)dx ?

        Olen yrittänyt laskea tätä : ∫(e^(-x))*x*sin(x)dx, enkä pysy niissä osareissa mukana, rupee päätä särkeen....Tämä minulta jäi laskematta, neljään pääsin...

        Olen lukenut väärin tehtävän. Integroin tuota kirjoittamaani lauseketta. No,olihan siinäkin harrastelua!
        Tehtävä näkyy olevankin integroida funktio
        x*e^(- x) sin(x) kuten kirjoitit.


      • Anonyymi
        Anonyymi kirjoitti:

        Olen lukenut väärin tehtävän. Integroin tuota kirjoittamaani lauseketta. No,olihan siinäkin harrastelua!
        Tehtävä näkyy olevankin integroida funktio
        x*e^(- x) sin(x) kuten kirjoitit.

        Tämäkin ratkeaa osittaisintegroinnilla.Vähän alkua.

        S(x e^(-x) sin(x)) dx = - S(x e^(-x) d(cos(x)) = - x e^(-x) cos(x) + S(cos(x) (e^(-x) - x e^(-x))dx

        S(cos(x) e^(-x))dx = S(e^(-x) d(sin(x) = e^(-x) sin(x) +S( sin(x) e^(-x))dx =
        e^(-x) sin(x) - S(e^(-x) d(cos(x)) = e^(-x) sin(x) - e^(-x) cos(x) - S(e^(-x) cos(x)) dx Tästä saadaan
        S(cos(x) e^(-x))dx = 1/2 e^(-x) (sin(x) - cos(x))

        Pitäisi vielä laskea S(cos(x) *x*e^(-x))dx mutta ei nyt ole aikaa. Ja helvetillistä näpyttelyä näidenlausekkeiden kirjoittaminen on!


      • Anonyymi
        Anonyymi kirjoitti:

        Tämäkin ratkeaa osittaisintegroinnilla.Vähän alkua.

        S(x e^(-x) sin(x)) dx = - S(x e^(-x) d(cos(x)) = - x e^(-x) cos(x) S(cos(x) (e^(-x) - x e^(-x))dx

        S(cos(x) e^(-x))dx = S(e^(-x) d(sin(x) = e^(-x) sin(x) S( sin(x) e^(-x))dx =
        e^(-x) sin(x) - S(e^(-x) d(cos(x)) = e^(-x) sin(x) - e^(-x) cos(x) - S(e^(-x) cos(x)) dx Tästä saadaan
        S(cos(x) e^(-x))dx = 1/2 e^(-x) (sin(x) - cos(x))

        Pitäisi vielä laskea S(cos(x) *x*e^(-x))dx mutta ei nyt ole aikaa. Ja helvetillistä näpyttelyä näidenlausekkeiden kirjoittaminen on!

        Itse asiassa kun laskin tuota "väärää" tehtävää niin siellä oli tuo integraala S1.Sijoituksella t = - x tämän oikean tehtävän integraalista saadaan - S1 muuttujana t. Ja tuon integraalinhan olin siis laskenut. Kun laskettuun integraaliin sijoitetaan t:n tilalle - x saadaan haluttu integraalifunktio
        - 1/2 e^(-x) (x sin(x) + x cos(x) + cos(x) ) + C
        Derivoimalla tämä saadaan e^(-x) x sin(x) kuten pitääkin.


      • Anonyymi
        Anonyymi kirjoitti:

        Itse asiassa kun laskin tuota "väärää" tehtävää niin siellä oli tuo integraala S1.Sijoituksella t = - x tämän oikean tehtävän integraalista saadaan - S1 muuttujana t. Ja tuon integraalinhan olin siis laskenut. Kun laskettuun integraaliin sijoitetaan t:n tilalle - x saadaan haluttu integraalifunktio
        - 1/2 e^(-x) (x sin(x) x cos(x) cos(x) ) C
        Derivoimalla tämä saadaan e^(-x) x sin(x) kuten pitääkin.

        Toi sijoitus t=-x on erittäin hyvä idea. Sillä minäkin sen sitten lopulta sain laskettua niillä osareilla, joilla kait pitkin...


    • Anonyymi
    • Anonyymi

      Vaikka se nelonen onkin minulle mahdoton osareilla ratkaista, niin käytetään sitä vihjettä kuitenkin siten, että päätellään mistä funktioryppäistä se integraali koostuu, ja sit kaivetaan se esiin derivoimalla: https://aijaa.com/m4IiXU

    • Anonyymi

      5. tehtävä.
      (9x^2-3x+1)^(1/2) =( (3x- 1/2)^2 + 3/4)^1/2 =
      ( 3/4 (2 sqrt(3) x - 1/sqrt(3))^2 + 1)^1/2
      = sqrt(3)/2 ((2 sqrt(3) x - 1/sqrt(3))^2 + 1)^1/2
      t = 2 sqrt(3) x - 1/sqrt(3) = 1/sqrt(3) * (6x-1) joten dt = 2 sqrt(3) dx
      Saadaan integraali
      1/4 Int( (1+t^2)^1/2) dt) = 1/8 (t sqrt(1+t^2) + arsinh(t)) + C =
      1/12 * (6x-1) * sqrt(9x^2 - 3x + 1) + 1/8 * arsinh((6x-1) / sqrt(3)) + C

    • Anonyymi

      Olikos ekaa vielä ratkaistu?

      x(ln(x^2+1)-2) + 2arctan(x) + C

      • Anonyymi

        Olihan se ratkaistu. Kommentti 2023-05-10 10:02:36.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ikävöin sinua kokoyön!

      En halua odottaa, että voisin näyttää sinulle kuinka paljon rakastan sinua. Toivon, että uskot, että olen varsin hullun
      Ikävä
      61
      4388
    2. KALAJOEN UIMAVALVONTA

      https://www.kalajokiseutu.fi/artikkeli/ei-tulisi-mieleenkaan-jattaa-pienta-yksinaan-hiekkasarkkien-valvomattomalla-uimar
      Kalajoki
      150
      3187
    3. Jos sinä olisit pyrkimässä elämääni takaisin

      Arvelisin sen johtuvan siitä, että olisit taas polttanut jonkun sillan takanasi. Ei taida löytyä enää kyliltä naista, jo
      Tunteet
      48
      2502
    4. Kadonnut poika hukkunut lietteeseen mitä kalajoella nyt on?

      Jätelautta ajautunut merelle ja lapsi uponnut jätelautan alle?
      Kalajoki
      51
      2435
    5. Hukkuneet pojat kalajoella pakolaisia?

      Eivät osanneet suomea nimittäin.
      Maailman menoa
      98
      2115
    6. Älä mahdollisesti ota itseesi

      En voinut tietää. Sitäpaitsi.. niin
      Ikävä
      24
      1883
    7. Joku hukkui Hyrynsalmella?

      Oliko mökkiläinen taas?
      Hyrynsalmi
      23
      1632
    8. Ota nainen yhteyttä ja tee Tikusta asiaa?

      Niin sitten minä teen Takusta asiaa.
      Ikävä
      30
      1616
    9. Mitä sinä mietit

      Mies?
      Ikävä
      161
      1484
    10. Metsästysmökki

      Metsästyskortti saapui. Lisäksi metsästysmökki varata!
      Kuhmo
      34
      1253
    Aihe