integrointivisa

Anonyymi-ap

Integrointivisa, 5 tehtävää, kuka laskee eniten kynällä ja paperilla oikein on voittanut. Ratkaisut ovat olemassa, ja ne on valittu siten että ne ovat reaaliarvoisia. Wolfram alpha antaa samat vihjeet kun tässä, mutta ei tee tehtäviä loppuun asti, ellette ole ostaneet pro-version. Kaikki välivaiheet esiin, jotta tiedetään että ette ole kopioineet vain ratkaisun jostakin.

∫ ln(x^2+1)dx, vihje: osittaisintegroinnilla suoraan

∫ 1/(cos(x)-sin(x)) dx , vihje: substituutiolla t= tan(x/2), jonka jälkeen osamurtoihin jako

∫ xsin(ln(x)) dx, vihje: substituutiolla x = e^t, käytä sen jälkeen osittaisintegrointia muutaman kerran

∫x(e^-x) sin(x)dx, vihje: käytä osittaisintegrointia suoraan
_____________
∫√9x^2 - 3x +1 dx, vihje sievennä neliöksi, tee sopiva substituutio, ja laske

20

952

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Koulussa on taidettu taas antaa kotitehtäviä.

      • Anonyymi

        😍😍😍😋😋😋😋😍😍😍

        🔞 ­­­N­y­­­m­­­f­­­o­­m­­a­­­a­­n­­i -> https://ye.pe/finngirl21#17849444t

        🔞💋❤️💋❤️💋🔞💋❤️💋❤️💋🔞


    • Anonyymi

      Ei ole, taidan sitten postata tämän muualle, koska täällä on törppöä väkeä.

      • Anonyymi

        Niin on parasta.


    • Anonyymi

      Näillä palstoilla päivystää paranoidi henkilö joka luulee ettei suomeen tule enää kunnon insinöörejä kun saavat täältä vastaukset koulutehtäviinsä.

    • Anonyymi

      Lasken vaan ton viimeisen, kun sitä olen pelkästään pähkäillyt ja silläkin taitaa tämän visan voittaa: https://aijaa.com/ZsAy2F

      • Anonyymi

        Loppuun pitää vielä lisätä vakio C.


    • Anonyymi

      Integraalimerkin asemesta kirjoitan:S

      S(ln(x^2+1) dx = x * ln(x^2+1) - S (2x^2/(x^2+1) dx
      S(x^2/(x^2+1) dx = S((1+x^2)/(1+x^2) - 1/(1+x^2)) dx = S((1- 1/(1+x^2)) dx =
      x - S (d(arctan(x)) = x-arctan(x)

      Kysytty integraalifunktio on siis
      x*ln(1+x^2) - 2x + 2 arctan(x) + C missä C on integroimisvakio.
      Tuon voi tarkastusmielessä derivoida ja tulos on juuri tuo ln(1+x^2).

      • Anonyymi

        Jatkoa: 3. tehtävä.
        x=e^t ja dx = e^t dt
        S(x sin(ln(x))) dx = S(e^(2t) * sin(t)) dt = S(e^(2t) d (- cos(t)) =
        - e^(2t) cos(t) + 2 S (e^(2t) cos(t)) dt =
        - e^(2t) cos(t) + 2 e^(2t) sin(t) - 4 S ( e^(2t) sin(t)) dt

        Saadaan että 5 S(e^(2t) sin(t)) dt = - e^(2t) cos(t) + 2 e^(2t) sin(t) joten
        S(x sin(ln(x))) dx = 1/5 ( - x^2 cos(ln(x)) + 2 x^2 sin(ln(x))) + C
        Derivoimalla tämä saadaan
        1/5*( - 2x cos(ln(x)) + x^2 sin(ln(x)) * 1/x + 4 x sin(ln(x)) + 2 x^2 cos(ln(x))* 1/x =
        x sin(ln(x)) kuten pitääkin.


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkoa: 3. tehtävä.
        x=e^t ja dx = e^t dt
        S(x sin(ln(x))) dx = S(e^(2t) * sin(t)) dt = S(e^(2t) d (- cos(t)) =
        - e^(2t) cos(t) 2 S (e^(2t) cos(t)) dt =
        - e^(2t) cos(t) 2 e^(2t) sin(t) - 4 S ( e^(2t) sin(t)) dt

        Saadaan että 5 S(e^(2t) sin(t)) dt = - e^(2t) cos(t) 2 e^(2t) sin(t) joten
        S(x sin(ln(x))) dx = 1/5 ( - x^2 cos(ln(x)) 2 x^2 sin(ln(x))) C
        Derivoimalla tämä saadaan
        1/5*( - 2x cos(ln(x)) x^2 sin(ln(x)) * 1/x 4 x sin(ln(x)) 2 x^2 cos(ln(x))* 1/x =
        x sin(ln(x)) kuten pitääkin.

        Jatkoa:4. tehtävä.
        Laskin integraalin kahdessa osassa.
        S1 = S(x e^x sin(x)) dx ja S2 = S (x^2 sin(x) ) dx Kysytty integraali on S1 - S2.

        Osittaisintegroinnilla saadaan
        2 * S1 = e^x (x sin(x) - x cos(x) + cos(x) )
        S2 = (2-x^2) cos(x) + 2x sin(x)
        Kysytty integraali on

        (1/2 x e^x - 2x) sin(x) + (- 1/2 x e^x + 1/2 e^x + x^2 - 2) cos(x)
        Lukija voi derivoimalla tarkastaa.
        Kaikkia välivaiheita en viitsinyt kirjoittaa, turhan vaivalloista. Ja selväpiirteistä osittaisintegrointiahan nuo S1 ja S2 ovat.


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkoa:4. tehtävä.
        Laskin integraalin kahdessa osassa.
        S1 = S(x e^x sin(x)) dx ja S2 = S (x^2 sin(x) ) dx Kysytty integraali on S1 - S2.

        Osittaisintegroinnilla saadaan
        2 * S1 = e^x (x sin(x) - x cos(x) cos(x) )
        S2 = (2-x^2) cos(x) 2x sin(x)
        Kysytty integraali on

        (1/2 x e^x - 2x) sin(x) (- 1/2 x e^x 1/2 e^x x^2 - 2) cos(x)
        Lukija voi derivoimalla tarkastaa.
        Kaikkia välivaiheita en viitsinyt kirjoittaa, turhan vaivalloista. Ja selväpiirteistä osittaisintegrointiahan nuo S1 ja S2 ovat.

        ∫x(e^-x) sin(x)dx........, eli onko tuo lauseke siis: ∫((e^x)-x)*x*sin(x)dx ?

        Olen yrittänyt laskea tätä : ∫(e^(-x))*x*sin(x)dx, enkä pysy niissä osareissa mukana, rupee päätä särkeen....Tämä minulta jäi laskematta, neljään pääsin...


      • Anonyymi
        Anonyymi kirjoitti:

        ∫x(e^-x) sin(x)dx........, eli onko tuo lauseke siis: ∫((e^x)-x)*x*sin(x)dx ?

        Olen yrittänyt laskea tätä : ∫(e^(-x))*x*sin(x)dx, enkä pysy niissä osareissa mukana, rupee päätä särkeen....Tämä minulta jäi laskematta, neljään pääsin...

        Olen lukenut väärin tehtävän. Integroin tuota kirjoittamaani lauseketta. No,olihan siinäkin harrastelua!
        Tehtävä näkyy olevankin integroida funktio
        x*e^(- x) sin(x) kuten kirjoitit.


      • Anonyymi
        Anonyymi kirjoitti:

        Olen lukenut väärin tehtävän. Integroin tuota kirjoittamaani lauseketta. No,olihan siinäkin harrastelua!
        Tehtävä näkyy olevankin integroida funktio
        x*e^(- x) sin(x) kuten kirjoitit.

        Tämäkin ratkeaa osittaisintegroinnilla.Vähän alkua.

        S(x e^(-x) sin(x)) dx = - S(x e^(-x) d(cos(x)) = - x e^(-x) cos(x) + S(cos(x) (e^(-x) - x e^(-x))dx

        S(cos(x) e^(-x))dx = S(e^(-x) d(sin(x) = e^(-x) sin(x) +S( sin(x) e^(-x))dx =
        e^(-x) sin(x) - S(e^(-x) d(cos(x)) = e^(-x) sin(x) - e^(-x) cos(x) - S(e^(-x) cos(x)) dx Tästä saadaan
        S(cos(x) e^(-x))dx = 1/2 e^(-x) (sin(x) - cos(x))

        Pitäisi vielä laskea S(cos(x) *x*e^(-x))dx mutta ei nyt ole aikaa. Ja helvetillistä näpyttelyä näidenlausekkeiden kirjoittaminen on!


      • Anonyymi
        Anonyymi kirjoitti:

        Tämäkin ratkeaa osittaisintegroinnilla.Vähän alkua.

        S(x e^(-x) sin(x)) dx = - S(x e^(-x) d(cos(x)) = - x e^(-x) cos(x) S(cos(x) (e^(-x) - x e^(-x))dx

        S(cos(x) e^(-x))dx = S(e^(-x) d(sin(x) = e^(-x) sin(x) S( sin(x) e^(-x))dx =
        e^(-x) sin(x) - S(e^(-x) d(cos(x)) = e^(-x) sin(x) - e^(-x) cos(x) - S(e^(-x) cos(x)) dx Tästä saadaan
        S(cos(x) e^(-x))dx = 1/2 e^(-x) (sin(x) - cos(x))

        Pitäisi vielä laskea S(cos(x) *x*e^(-x))dx mutta ei nyt ole aikaa. Ja helvetillistä näpyttelyä näidenlausekkeiden kirjoittaminen on!

        Itse asiassa kun laskin tuota "väärää" tehtävää niin siellä oli tuo integraala S1.Sijoituksella t = - x tämän oikean tehtävän integraalista saadaan - S1 muuttujana t. Ja tuon integraalinhan olin siis laskenut. Kun laskettuun integraaliin sijoitetaan t:n tilalle - x saadaan haluttu integraalifunktio
        - 1/2 e^(-x) (x sin(x) + x cos(x) + cos(x) ) + C
        Derivoimalla tämä saadaan e^(-x) x sin(x) kuten pitääkin.


      • Anonyymi
        Anonyymi kirjoitti:

        Itse asiassa kun laskin tuota "väärää" tehtävää niin siellä oli tuo integraala S1.Sijoituksella t = - x tämän oikean tehtävän integraalista saadaan - S1 muuttujana t. Ja tuon integraalinhan olin siis laskenut. Kun laskettuun integraaliin sijoitetaan t:n tilalle - x saadaan haluttu integraalifunktio
        - 1/2 e^(-x) (x sin(x) x cos(x) cos(x) ) C
        Derivoimalla tämä saadaan e^(-x) x sin(x) kuten pitääkin.

        Toi sijoitus t=-x on erittäin hyvä idea. Sillä minäkin sen sitten lopulta sain laskettua niillä osareilla, joilla kait pitkin...


    • Anonyymi
    • Anonyymi

      Vaikka se nelonen onkin minulle mahdoton osareilla ratkaista, niin käytetään sitä vihjettä kuitenkin siten, että päätellään mistä funktioryppäistä se integraali koostuu, ja sit kaivetaan se esiin derivoimalla: https://aijaa.com/m4IiXU

    • Anonyymi

      5. tehtävä.
      (9x^2-3x+1)^(1/2) =( (3x- 1/2)^2 + 3/4)^1/2 =
      ( 3/4 (2 sqrt(3) x - 1/sqrt(3))^2 + 1)^1/2
      = sqrt(3)/2 ((2 sqrt(3) x - 1/sqrt(3))^2 + 1)^1/2
      t = 2 sqrt(3) x - 1/sqrt(3) = 1/sqrt(3) * (6x-1) joten dt = 2 sqrt(3) dx
      Saadaan integraali
      1/4 Int( (1+t^2)^1/2) dt) = 1/8 (t sqrt(1+t^2) + arsinh(t)) + C =
      1/12 * (6x-1) * sqrt(9x^2 - 3x + 1) + 1/8 * arsinh((6x-1) / sqrt(3)) + C

    • Anonyymi

      Olikos ekaa vielä ratkaistu?

      x(ln(x^2+1)-2) + 2arctan(x) + C

      • Anonyymi

        Olihan se ratkaistu. Kommentti 2023-05-10 10:02:36.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Janne Ahonen E R O A A

      Taas 2 lasta jää vaille ehjää perhettä!
      Kotimaiset julkkisjuorut
      172
      3570
    2. Tekisi niin mieli laittaa sulle viestiä

      En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m
      Ikävä
      85
      1598
    3. Miksi ihmeessä?

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek
      Ateismi
      26
      1317
    4. Ootko huomannut miten

      pursuat joka puolelta. Sille joka luulee itsestään liikoja 🫵🙋🏻‍♂️
      Ikävä
      158
      1242
    5. Pitääkö penkeillä hypätä Martina?

      Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit
      Kotimaiset julkkisjuorut
      194
      1013
    6. Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut
      Maailman menoa
      16
      983
    7. Kerropa ESA miten kävi tuomioiden

      Osaako ESA kertoa miten haukkumasi kunnanhallituksen kävi.
      Puolanka
      35
      981
    8. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      63
      879
    9. Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä

      Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk
      Maailman menoa
      95
      829
    10. Se olisi ihan

      Napinpainalluksen päässä. Ei vaatisi paljon
      Ikävä
      62
      765
    Aihe