integrointivisa

Anonyymi-ap

Integrointivisa, 5 tehtävää, kuka laskee eniten kynällä ja paperilla oikein on voittanut. Ratkaisut ovat olemassa, ja ne on valittu siten että ne ovat reaaliarvoisia. Wolfram alpha antaa samat vihjeet kun tässä, mutta ei tee tehtäviä loppuun asti, ellette ole ostaneet pro-version. Kaikki välivaiheet esiin, jotta tiedetään että ette ole kopioineet vain ratkaisun jostakin.

∫ ln(x^2+1)dx, vihje: osittaisintegroinnilla suoraan

∫ 1/(cos(x)-sin(x)) dx , vihje: substituutiolla t= tan(x/2), jonka jälkeen osamurtoihin jako

∫ xsin(ln(x)) dx, vihje: substituutiolla x = e^t, käytä sen jälkeen osittaisintegrointia muutaman kerran

∫x(e^-x) sin(x)dx, vihje: käytä osittaisintegrointia suoraan
_____________
∫√9x^2 - 3x +1 dx, vihje sievennä neliöksi, tee sopiva substituutio, ja laske

20

1138

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Koulussa on taidettu taas antaa kotitehtäviä.

      • Anonyymi

        😍😍😍😋😋😋😋😍😍😍

        🔞 ­­­N­y­­­m­­­f­­­o­­m­­a­­­a­­n­­i -> https://ye.pe/finngirl21#17849444t

        🔞💋❤️💋❤️💋🔞💋❤️💋❤️💋🔞


    • Anonyymi

      Ei ole, taidan sitten postata tämän muualle, koska täällä on törppöä väkeä.

      • Anonyymi

        Niin on parasta.


    • Anonyymi

      Näillä palstoilla päivystää paranoidi henkilö joka luulee ettei suomeen tule enää kunnon insinöörejä kun saavat täältä vastaukset koulutehtäviinsä.

    • Anonyymi

      Lasken vaan ton viimeisen, kun sitä olen pelkästään pähkäillyt ja silläkin taitaa tämän visan voittaa: https://aijaa.com/ZsAy2F

      • Anonyymi

        Loppuun pitää vielä lisätä vakio C.


    • Anonyymi

      Integraalimerkin asemesta kirjoitan:S

      S(ln(x^2+1) dx = x * ln(x^2+1) - S (2x^2/(x^2+1) dx
      S(x^2/(x^2+1) dx = S((1+x^2)/(1+x^2) - 1/(1+x^2)) dx = S((1- 1/(1+x^2)) dx =
      x - S (d(arctan(x)) = x-arctan(x)

      Kysytty integraalifunktio on siis
      x*ln(1+x^2) - 2x + 2 arctan(x) + C missä C on integroimisvakio.
      Tuon voi tarkastusmielessä derivoida ja tulos on juuri tuo ln(1+x^2).

      • Anonyymi

        Jatkoa: 3. tehtävä.
        x=e^t ja dx = e^t dt
        S(x sin(ln(x))) dx = S(e^(2t) * sin(t)) dt = S(e^(2t) d (- cos(t)) =
        - e^(2t) cos(t) + 2 S (e^(2t) cos(t)) dt =
        - e^(2t) cos(t) + 2 e^(2t) sin(t) - 4 S ( e^(2t) sin(t)) dt

        Saadaan että 5 S(e^(2t) sin(t)) dt = - e^(2t) cos(t) + 2 e^(2t) sin(t) joten
        S(x sin(ln(x))) dx = 1/5 ( - x^2 cos(ln(x)) + 2 x^2 sin(ln(x))) + C
        Derivoimalla tämä saadaan
        1/5*( - 2x cos(ln(x)) + x^2 sin(ln(x)) * 1/x + 4 x sin(ln(x)) + 2 x^2 cos(ln(x))* 1/x =
        x sin(ln(x)) kuten pitääkin.


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkoa: 3. tehtävä.
        x=e^t ja dx = e^t dt
        S(x sin(ln(x))) dx = S(e^(2t) * sin(t)) dt = S(e^(2t) d (- cos(t)) =
        - e^(2t) cos(t) 2 S (e^(2t) cos(t)) dt =
        - e^(2t) cos(t) 2 e^(2t) sin(t) - 4 S ( e^(2t) sin(t)) dt

        Saadaan että 5 S(e^(2t) sin(t)) dt = - e^(2t) cos(t) 2 e^(2t) sin(t) joten
        S(x sin(ln(x))) dx = 1/5 ( - x^2 cos(ln(x)) 2 x^2 sin(ln(x))) C
        Derivoimalla tämä saadaan
        1/5*( - 2x cos(ln(x)) x^2 sin(ln(x)) * 1/x 4 x sin(ln(x)) 2 x^2 cos(ln(x))* 1/x =
        x sin(ln(x)) kuten pitääkin.

        Jatkoa:4. tehtävä.
        Laskin integraalin kahdessa osassa.
        S1 = S(x e^x sin(x)) dx ja S2 = S (x^2 sin(x) ) dx Kysytty integraali on S1 - S2.

        Osittaisintegroinnilla saadaan
        2 * S1 = e^x (x sin(x) - x cos(x) + cos(x) )
        S2 = (2-x^2) cos(x) + 2x sin(x)
        Kysytty integraali on

        (1/2 x e^x - 2x) sin(x) + (- 1/2 x e^x + 1/2 e^x + x^2 - 2) cos(x)
        Lukija voi derivoimalla tarkastaa.
        Kaikkia välivaiheita en viitsinyt kirjoittaa, turhan vaivalloista. Ja selväpiirteistä osittaisintegrointiahan nuo S1 ja S2 ovat.


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkoa:4. tehtävä.
        Laskin integraalin kahdessa osassa.
        S1 = S(x e^x sin(x)) dx ja S2 = S (x^2 sin(x) ) dx Kysytty integraali on S1 - S2.

        Osittaisintegroinnilla saadaan
        2 * S1 = e^x (x sin(x) - x cos(x) cos(x) )
        S2 = (2-x^2) cos(x) 2x sin(x)
        Kysytty integraali on

        (1/2 x e^x - 2x) sin(x) (- 1/2 x e^x 1/2 e^x x^2 - 2) cos(x)
        Lukija voi derivoimalla tarkastaa.
        Kaikkia välivaiheita en viitsinyt kirjoittaa, turhan vaivalloista. Ja selväpiirteistä osittaisintegrointiahan nuo S1 ja S2 ovat.

        ∫x(e^-x) sin(x)dx........, eli onko tuo lauseke siis: ∫((e^x)-x)*x*sin(x)dx ?

        Olen yrittänyt laskea tätä : ∫(e^(-x))*x*sin(x)dx, enkä pysy niissä osareissa mukana, rupee päätä särkeen....Tämä minulta jäi laskematta, neljään pääsin...


      • Anonyymi
        Anonyymi kirjoitti:

        ∫x(e^-x) sin(x)dx........, eli onko tuo lauseke siis: ∫((e^x)-x)*x*sin(x)dx ?

        Olen yrittänyt laskea tätä : ∫(e^(-x))*x*sin(x)dx, enkä pysy niissä osareissa mukana, rupee päätä särkeen....Tämä minulta jäi laskematta, neljään pääsin...

        Olen lukenut väärin tehtävän. Integroin tuota kirjoittamaani lauseketta. No,olihan siinäkin harrastelua!
        Tehtävä näkyy olevankin integroida funktio
        x*e^(- x) sin(x) kuten kirjoitit.


      • Anonyymi
        Anonyymi kirjoitti:

        Olen lukenut väärin tehtävän. Integroin tuota kirjoittamaani lauseketta. No,olihan siinäkin harrastelua!
        Tehtävä näkyy olevankin integroida funktio
        x*e^(- x) sin(x) kuten kirjoitit.

        Tämäkin ratkeaa osittaisintegroinnilla.Vähän alkua.

        S(x e^(-x) sin(x)) dx = - S(x e^(-x) d(cos(x)) = - x e^(-x) cos(x) + S(cos(x) (e^(-x) - x e^(-x))dx

        S(cos(x) e^(-x))dx = S(e^(-x) d(sin(x) = e^(-x) sin(x) +S( sin(x) e^(-x))dx =
        e^(-x) sin(x) - S(e^(-x) d(cos(x)) = e^(-x) sin(x) - e^(-x) cos(x) - S(e^(-x) cos(x)) dx Tästä saadaan
        S(cos(x) e^(-x))dx = 1/2 e^(-x) (sin(x) - cos(x))

        Pitäisi vielä laskea S(cos(x) *x*e^(-x))dx mutta ei nyt ole aikaa. Ja helvetillistä näpyttelyä näidenlausekkeiden kirjoittaminen on!


      • Anonyymi
        Anonyymi kirjoitti:

        Tämäkin ratkeaa osittaisintegroinnilla.Vähän alkua.

        S(x e^(-x) sin(x)) dx = - S(x e^(-x) d(cos(x)) = - x e^(-x) cos(x) S(cos(x) (e^(-x) - x e^(-x))dx

        S(cos(x) e^(-x))dx = S(e^(-x) d(sin(x) = e^(-x) sin(x) S( sin(x) e^(-x))dx =
        e^(-x) sin(x) - S(e^(-x) d(cos(x)) = e^(-x) sin(x) - e^(-x) cos(x) - S(e^(-x) cos(x)) dx Tästä saadaan
        S(cos(x) e^(-x))dx = 1/2 e^(-x) (sin(x) - cos(x))

        Pitäisi vielä laskea S(cos(x) *x*e^(-x))dx mutta ei nyt ole aikaa. Ja helvetillistä näpyttelyä näidenlausekkeiden kirjoittaminen on!

        Itse asiassa kun laskin tuota "väärää" tehtävää niin siellä oli tuo integraala S1.Sijoituksella t = - x tämän oikean tehtävän integraalista saadaan - S1 muuttujana t. Ja tuon integraalinhan olin siis laskenut. Kun laskettuun integraaliin sijoitetaan t:n tilalle - x saadaan haluttu integraalifunktio
        - 1/2 e^(-x) (x sin(x) + x cos(x) + cos(x) ) + C
        Derivoimalla tämä saadaan e^(-x) x sin(x) kuten pitääkin.


      • Anonyymi
        Anonyymi kirjoitti:

        Itse asiassa kun laskin tuota "väärää" tehtävää niin siellä oli tuo integraala S1.Sijoituksella t = - x tämän oikean tehtävän integraalista saadaan - S1 muuttujana t. Ja tuon integraalinhan olin siis laskenut. Kun laskettuun integraaliin sijoitetaan t:n tilalle - x saadaan haluttu integraalifunktio
        - 1/2 e^(-x) (x sin(x) x cos(x) cos(x) ) C
        Derivoimalla tämä saadaan e^(-x) x sin(x) kuten pitääkin.

        Toi sijoitus t=-x on erittäin hyvä idea. Sillä minäkin sen sitten lopulta sain laskettua niillä osareilla, joilla kait pitkin...


    • Anonyymi
    • Anonyymi

      Vaikka se nelonen onkin minulle mahdoton osareilla ratkaista, niin käytetään sitä vihjettä kuitenkin siten, että päätellään mistä funktioryppäistä se integraali koostuu, ja sit kaivetaan se esiin derivoimalla: https://aijaa.com/m4IiXU

    • Anonyymi

      5. tehtävä.
      (9x^2-3x+1)^(1/2) =( (3x- 1/2)^2 + 3/4)^1/2 =
      ( 3/4 (2 sqrt(3) x - 1/sqrt(3))^2 + 1)^1/2
      = sqrt(3)/2 ((2 sqrt(3) x - 1/sqrt(3))^2 + 1)^1/2
      t = 2 sqrt(3) x - 1/sqrt(3) = 1/sqrt(3) * (6x-1) joten dt = 2 sqrt(3) dx
      Saadaan integraali
      1/4 Int( (1+t^2)^1/2) dt) = 1/8 (t sqrt(1+t^2) + arsinh(t)) + C =
      1/12 * (6x-1) * sqrt(9x^2 - 3x + 1) + 1/8 * arsinh((6x-1) / sqrt(3)) + C

    • Anonyymi

      Olikos ekaa vielä ratkaistu?

      x(ln(x^2+1)-2) + 2arctan(x) + C

      • Anonyymi

        Olihan se ratkaistu. Kommentti 2023-05-10 10:02:36.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Lataus pakkaskelissä

      En olisi koskaan ostanut sähköautoa jos olisin tajunnut että ne eivät lataa pakkasissa suurteholatauksella vaan istut tu
      Hybridi- ja sähköautot
      121
      4550
    2. Kun väestö ikääntyy ja veronmaksajat vähenee, mitä sitten vasemmistolaiset?

      Maahanmuutto ei vaan ole ratkaisu väestön ikääntymiseen. Maahanmuutto lykkää ja hidastaa väestön ikääntymistä ja työv
      Maailman menoa
      69
      2632
    3. Miksei Trump ole kiinnostunut Suomen valloittamisesta?

      Täällähän on enemmän turvetta kuin Norjalla öljyä. Eikö Ttump ole turvenuija?
      Maailman menoa
      80
      1665
    4. Kyllä mä suren

      Sitä että mikään ei ole kuten ennen. Ei niitä hetkiä ja katseita. Toisaalta keho lepää eikä enää tarvitse sitä tuskaa ko
      Ikävä
      9
      1146
    5. Jos vielä joku päivä nähtäis...

      Miten suhtautuisit minuun, mies?
      Ikävä
      66
      872
    6. Nyt se on varmaa kuntajakoselvitys

      Ensi viikolla tuöee kuntaministeri ulos ja kertoo asiasta.
      Ähtäri
      21
      853
    7. Laitetaan nyt kirjaimet kohdilleen

      kuka rakastaa ja ketä ?
      Ikävä
      41
      845
    8. Olet mies aika ailahteleva luonteeltasi

      Olen nähnyt kuinka olet iloinen, sosiaalinen ja osallistuva. Autat ja kannustat muita. Ja sitten olen nähnyt kuinka istu
      Ikävä
      120
      833
    9. Yhteen hiileen velanottoveljet V P K

      Tytäryhtiöissä palaa julkista rahaa ja vastuuttomuuden takia -ei pakollisten -kuntalain edellyttämien asioiden takia! N
      Pyhäjärvi
      67
      807
    10. Olisin valmis tutustumaan uudelleen

      En menneisyyden kautta vaan haluaisin tutustua ihmiseen, jollaiseksi olet kasvanut.
      Ikävä
      50
      789
    Aihe