Pulmallista?

Anonyymi-ap

Fysiikassa liikettä kuvataan näin.

Olkoon p massapiste jonka paikkavektori hetkellä t on R(t). Sen nopeus tuolloin on R'(t) ja kiihtyvyys R''(t). Olkoon kiihtyvyys vakio: R''(t) = R''(0).

Nyt R(t) = R(0) + R'(0) t + 1/2 R''(0) t^2
Summat R(t) + R'(t) , R(t) + R''(t), R'(t) + R''(t) jne ovat kuitenkin mieltä vailla. Miksi? Ovathan nuo summan termit vektoreita joita pitäisi voida laskea yhteen.

Miten sitten selittyy se, että kun R'(t) kerrotaan skalaarilla t tai R''(t) kerrotaan skalaarilla 1/2 t^2 saadaan vektorit jotka voidaan mielekkäästi laskea yhteen?

Jos joku tarjoaa selitystä "laadusta", eli siitä että nopeuden yksikkö on m/s ja kiihtyvyyden yksikkö on m/s^2 niin tämä selitys ei kelpaa. Ei vektoriavaruudessa vektoreilla ole eri dimensioita.

14

465

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Paikka-, nopeus- ja kiihtyvyysvektorit sijaitsevat aivan eri avaruuksissa.
      Niiden yhteenlasku on aivan yhtä hyödyllistä kuin vihreiden vaalituloksen laskeminen yhteen Tuomiokirkon kupolin korkeuden kanssa.

    • Anonyymi

      Mikähän tuossa nyt oikein on ongelma? Eihän nuo derivaatat mitään skalaareja ole, vaan ajan vektoriarvoisia funktioita samaan lineaaruseen kohdeavaruuteen.

    • Anonyymi

      Kommenteissa ei toistaiseksi mitään mieltä.

      Jos nuo vektorit sijaitsevatb "eri avaruuksissa" niin kuinka ne joutuvat samaan avaruuteen ja voidaan laskea yhteen sitten kun ne on kerrottu tietyillä skalaareilla.? Esim. R'' kerrotaan luvulla 1/2 t^2 tai R' luvulla t.

      Enkä minä sanonut että nuo derivaatat olisivat skalaareja. Vektoreitahan niiden pitäisi olla. Mutta niitä ei voi laskea yhteen. Sitten voi kun kun ne kertoo tietyillä skalaareilla.

      Eivätkö kommentoijat voisi vaivautua edes lukemaan kunnolla viestin jota kommentoivat?

      • Anonyymi

        Mieti laatujen kautta m, m/s ja m/s² yksittäisiä termejä. Helpottaisiko, jos kirjoitat R':n tilalle v ja R'':n tilalle a?


      • Anonyymi
        Anonyymi kirjoitti:

        Mieti laatujen kautta m, m/s ja m/s² yksittäisiä termejä. Helpottaisiko, jos kirjoitat R':n tilalle v ja R'':n tilalle a?

        Et sinäkään näköjään edes lukenut kysymystäni. Mainitsin jo siinä nuo "laadut". Ei vektoriavaruuden vektoreita ole monenlaisia, erilaatuisia. Kaikki samanlaisia vektoreita.


      • Anonyymi
        Anonyymi kirjoitti:

        Et sinäkään näköjään edes lukenut kysymystäni. Mainitsin jo siinä nuo "laadut". Ei vektoriavaruuden vektoreita ole monenlaisia, erilaatuisia. Kaikki samanlaisia vektoreita.

        Hahmotatko nyt oikein eri vektoriavaruuksia. Ethän voi laskea eri tyyppisiä vektoreita yhteen.


      • Anonyymi

        "..että nuo derivaatat olisivat skalaareja. Vektoreitahan niiden pitäisi olla. Mutta niitä ei voi laskea yhteen. Sitten voi kun kun ne kertoo tietyillä skalaareilla."

        Derivaatat R´ ja R´´ ovat vektoriarvoisia funktioita ja kyllä niitä voi laskea yhteen sellaisenaan.
        Se summa ei kuitenkaan tuota fysikaalisessa merkityksessä massakeskipisteen paikkaa, siksi nuo kertoimet kun halua paikkafunktion R(t).


    • Anonyymi

      Eikös nuo derivaatat ole tangenttivektoreita, ei siinä paljon järkeä ole niitä yhteen laskeakaan. Sitten kun siihen tulee t kylkeen niin, ne muuttuu pinta-aloiksi, ja niitä voi laskea yhteen.

      • Anonyymi

        Olkoon vektori tai tangenttivektori: kun se kerrotaan skalaarilla saadaan taas vektori.
        Tämä sisältyy jo vektoriavaruuden määritelmään.


    • Anonyymi
      • Anonyymi

        Noistapa (erityisesti Tao) huomaa, ettei kysymykseni ollut ihan niin simppeli kuin jotkut kommentoijat näyttivät luulevan.


      • Anonyymi

        Jos se elelisi kerroinkunnassa, niin niin niin niitä kuntia pitäisi olla monta. R(t):n kerroinkunta (m), R*(t):n kunta (m/s) , R''(t):n kunta (m/s^2) jne jne.

        Eihän näitä sitten voisi laskea yhteen jos kerran kerroinkunnat ovat eri kuntia.

        Mystistä!


      • Anonyymi
        Anonyymi kirjoitti:

        Jos se elelisi kerroinkunnassa, niin niin niin niitä kuntia pitäisi olla monta. R(t):n kerroinkunta (m), R*(t):n kunta (m/s) , R''(t):n kunta (m/s^2) jne jne.

        Eihän näitä sitten voisi laskea yhteen jos kerran kerroinkunnat ovat eri kuntia.

        Mystistä!

        Kirjoitusvirhe: p.o.: R'(t):n kunta


      • Anonyymi
        Anonyymi kirjoitti:

        Jos se elelisi kerroinkunnassa, niin niin niin niitä kuntia pitäisi olla monta. R(t):n kerroinkunta (m), R*(t):n kunta (m/s) , R''(t):n kunta (m/s^2) jne jne.

        Eihän näitä sitten voisi laskea yhteen jos kerran kerroinkunnat ovat eri kuntia.

        Mystistä!

        Siihen täytyy varmaan kuvitella joku homomorfismi, joka kertoo 1/s - yksikköisellä luvulla.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      272
      2410
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      299
      1289
    3. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      108
      1201
    4. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      83
      1201
    5. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      58
      1145
    6. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      81
      1096
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      44
      962
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      67
      897
    9. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      22
      860
    10. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      33
      767
    Aihe