Todistus; Piirrä funktiolle y=1/x kuvaaja. Kun x=∞ y=0 ja kun y=0 x=∞ sen voi kuvaajan hahmoteltuaan itse havaita ja jos 1/∞=0, niin silloin on myös 1/0=∞.
1/0=∞
7
454
Vastaukset
- yksi vain
Kirjoitit:
"Kun x=∞"
Reaaliluvuista (joita laskutoimituksissa yleensä käytetään, ellei muuta ole mainittu) puhuttaessa noin ei voi olla, koska ääretön ei reaalilukujen joukkoon kuulu.
Olet siis määritellyt jonkin muun lukujoukon, jonka alkio ääretön on, ja sitten laskutoimitukset tälle joukolle? Haluatko kertoa tarkemmin millaisen? Oletko miettinyt käyttäytyykö ääretön samalla tavalla kuin joukon muut alkiot? Mitä esimerkiksi on 1 ∞ ?1 ∞=∞, en väitä, että ääretön käyttäytyy mitenkään muuten kuin miten ääretön käyttäytyy.
Pointti olikin se, että mikäli lausekkeessa x:n paikalle laitetaan ääretän y=0, jonka voi tulkita myös toisinpäin 1/0=∞.
Ja kyllähän se ääretön sieltä 3D-lukukartasta löytyy, nollaa vatapäätä.- a-s-h
T12 kirjoitti:
1 ∞=∞, en väitä, että ääretön käyttäytyy mitenkään muuten kuin miten ääretön käyttäytyy.
Pointti olikin se, että mikäli lausekkeessa x:n paikalle laitetaan ääretän y=0, jonka voi tulkita myös toisinpäin 1/0=∞.
Ja kyllähän se ääretön sieltä 3D-lukukartasta löytyy, nollaa vatapäätä.Ei ole mitenkään itsestään selvää, miten äärettömän symbolin pitäisi laskutoimituksissa käyttäytyä. Erityisesti sinun pitäisi perustella, miksi yhtälöstä 1/∞ = 0 pitäisi seurata 1/0 = ∞.
Ajattelitko muuten sisällyttää rakennelmaasi myös symbolin -∞ laskutoimituksineen? Jos nimittäin -∞ on mukana, miksi ei yhtä hyvin pätisi 1/0 = -∞? a-s-h kirjoitti:
Ei ole mitenkään itsestään selvää, miten äärettömän symbolin pitäisi laskutoimituksissa käyttäytyä. Erityisesti sinun pitäisi perustella, miksi yhtälöstä 1/∞ = 0 pitäisi seurata 1/0 = ∞.
Ajattelitko muuten sisällyttää rakennelmaasi myös symbolin -∞ laskutoimituksineen? Jos nimittäin -∞ on mukana, miksi ei yhtä hyvin pätisi 1/0 = -∞?No mitä todistamiseen tulee, niin piirsitko sinä sitä kuvaajaa y=1/x ja sen kun olet piirtänyt, niin kyllä voit itsekkin todeta että kun x=∞, niin silloin y=0 jonka kävin läpi jo ensimmäisessä viestissäni.
Mitä -∞:mään tulee, niin miinus merkki hän kertoo vain suunnan äärettömyydelle, jota voi käyttää esimerkiksi fysiikassa ja jonka voi huomata piirtäessäsi kuvaajaan y=-1/x.
Miksi ei 1/0=-∞, koska kun esimerkiksi sinulla on 1cm korkuinen mappi johon laitat kalvoja joiden paksuus on 0cm. Voit laittaa näitä kalvoja mappiin äärettömän määrän. Voit aina laittaa vielä yhden. 1/0≠-∞ koska 1-1≠-0.
Määritelmä: (sanakirja)
"Kaikkea laskettavissa tai mitattavissa olevaa suurempi ∞•∞=∞. Mitoiltaan, määrältään tai ominaisuuksiltaan suunnattoman suuri, loputon, rajaton, mittaamaton, määrätön, tavaton, valtava tai valtaisa."- a-s-h
T12 kirjoitti:
No mitä todistamiseen tulee, niin piirsitko sinä sitä kuvaajaa y=1/x ja sen kun olet piirtänyt, niin kyllä voit itsekkin todeta että kun x=∞, niin silloin y=0 jonka kävin läpi jo ensimmäisessä viestissäni.
Mitä -∞:mään tulee, niin miinus merkki hän kertoo vain suunnan äärettömyydelle, jota voi käyttää esimerkiksi fysiikassa ja jonka voi huomata piirtäessäsi kuvaajaan y=-1/x.
Miksi ei 1/0=-∞, koska kun esimerkiksi sinulla on 1cm korkuinen mappi johon laitat kalvoja joiden paksuus on 0cm. Voit laittaa näitä kalvoja mappiin äärettömän määrän. Voit aina laittaa vielä yhden. 1/0≠-∞ koska 1-1≠-0.
Määritelmä: (sanakirja)
"Kaikkea laskettavissa tai mitattavissa olevaa suurempi ∞•∞=∞. Mitoiltaan, määrältään tai ominaisuuksiltaan suunnattoman suuri, loputon, rajaton, mittaamaton, määrätön, tavaton, valtava tai valtaisa."En sano muuta kuin tämän: Jos haluat oikeasti perehtyä asiaan, hanki jostain joku mittateorian oppikirja tai hae vaikka netistä hakulauseella "laajennettu reaalilukujoukko".
- poju554
a-s-h kirjoitti:
En sano muuta kuin tämän: Jos haluat oikeasti perehtyä asiaan, hanki jostain joku mittateorian oppikirja tai hae vaikka netistä hakulauseella "laajennettu reaalilukujoukko".
Perehdy Cantorin joukko-oppiin. Äärettömyyksille on olemassa erilaisia mahtavuuksia.
Pienin mahtavuus pätee kokonaisluvuille.
Rationaalilukujakin on yhtä vähän kuin kokonaislukuja.
Reaalilukujen joukko=kokonaislukujen potenssijoukko.
Kaikkein suurimpana ovat mitalliset kardinaalit, tosin näiden olemassaoloa ei ole kaiketi kyetty todistamaan. - hh7u
T12 kirjoitti:
No mitä todistamiseen tulee, niin piirsitko sinä sitä kuvaajaa y=1/x ja sen kun olet piirtänyt, niin kyllä voit itsekkin todeta että kun x=∞, niin silloin y=0 jonka kävin läpi jo ensimmäisessä viestissäni.
Mitä -∞:mään tulee, niin miinus merkki hän kertoo vain suunnan äärettömyydelle, jota voi käyttää esimerkiksi fysiikassa ja jonka voi huomata piirtäessäsi kuvaajaan y=-1/x.
Miksi ei 1/0=-∞, koska kun esimerkiksi sinulla on 1cm korkuinen mappi johon laitat kalvoja joiden paksuus on 0cm. Voit laittaa näitä kalvoja mappiin äärettömän määrän. Voit aina laittaa vielä yhden. 1/0≠-∞ koska 1-1≠-0.
Määritelmä: (sanakirja)
"Kaikkea laskettavissa tai mitattavissa olevaa suurempi ∞•∞=∞. Mitoiltaan, määrältään tai ominaisuuksiltaan suunnattoman suuri, loputon, rajaton, mittaamaton, määrätön, tavaton, valtava tai valtaisa.""No mitä todistamiseen tulee, niin piirsitko sinä sitä kuvaajaa y=1/x ja sen kun olet piirtänyt, niin kyllä voit itsekkin todeta että kun x=∞, niin silloin y=0 jonka kävin läpi jo ensimmäisessä viestissäni. "
Ei kuvaajan piirtäminen ja sen tutkiminen ole mikään täsmällinen todistus. Ja vaikka olisikin, niin se ei tässä tapauksessa pätisi, koska et kuitenkaan voi piirtää funktion 1/x kuvaajaa äärettömyyteen saakka.
Tietysti kuvaasta voi vetää jonkinlaisen johtopäätöksen 1/x:sän käyttäytymisestä, kun x kasvaa rajatta, mutta sekin johtopäätös pitäisi todistaa jollain "oikealla" menetelmällä.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Marin sitä, Marin tätä, yhyy yhyy, persut jaksaa vollottaa
On nuo persut kyllä surkeaa porukkaa. Edelleen itkevät jonkun Marinin perään, vaikka itse ovat tuhonneet Suomen kansan t1313787Ikävä sinua..
Kauan on aikaa kulunut ja asioita tapahtunut. Mutta sinä M-ies olet edelleen vain mielessäni. En tiedä loinko sinusta va201763Riikka Purra: "Kokoomus haluaa leikata pienituloisten etuuksista - Se ei meille käy"
Näin vakuutti persujen Purra edellisten eduskunta vaalien alla,. https://www.ku.fi/artikkeli/4910942-kun-uudessa-videos261608Riikka Purra sanoo, että sietokykyni vittumaisiin ihmisiin alkaa olla lopussa.
https://www.iltalehti.fi/politiikka/a/be8f784d-fa24-44d6-b59a-b9b83b629b28 Riikka Purra sanoo medialle suorat sanat vitt3011435Muistattekos kuinka persujen Salainen Akentti kävi Putinin leirillä
Hakemassa jamesbondimaista vakoiluoppia paikan päällä Venäjällä? Siitä ei edes Suomea suojeleva viranomainen saanut puhu191410Lindtmanin pääministeriys lähenee päivä päivältä
Suomen kansan kissanpäivät alkavat siitä hetkestä, kun presidentti Stubb on tehnyt nimityksen. Ainoastaan ylin tulodesi411330Tuntuuko sinusta mies
että olet jossain, mutta sydämessäsi haluat olla muualla. Suunnittelet kaikkea kivaa ja olet innolla mukana, mutta silti16994Kapiainen siviiliesimies, Herra suuri Herra
Sotilaana kyvytön, johtajana munaton ja kotona tossun alla. Se on upseerin uran tuen pää, seinään ajo. Mutta aina löytyy74978Väärä pää tutustumiseen
Mikä ihme on, että miehet haluavat ensimmäisenä sänkyyn? Onko nykyään niin helppo saada nainen peittojensa alle.. tai pä127944- 73848
