LYHYT MATIKKA, APUA!!!!

99erica

Tarvitsisin apua tässä lyhyen matikan tehtävässä ——>

Liisi tallettaa joka kuukauden alussa 150 euroa tilille, jonka korko on 3 % p.a. (Huomaa: p.a. eli per annum, vuodessa.) Kuinka paljon rahaa on nostettavissa viiden vuoden kuluttua?

6

270

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Noinkohan

      Voi olettaa että tallettaminen aloitetaan vuoden alussa. Korko lasketaan kai kunkin vuoden keskitalletuksille, ja ne ovat 900, 2700, 4500, 6300 ja 8100 euroa.

    • Ohman4

      Pankit laskenevat mikä mitenkin. Matemaattinen lasku on seuraava:

      Jos vuotuinen korko = p ja kuukauden alussa talletetaan summa s niin kuukauden lopussa se on kasvanut määrään s(1 p)^(1/12. Toisen kuukauden lopussa tästä on tullut s(1 p)^(2/12) ja vuoden kuluttua se on s(1 p)^(12/12)= s(1 p) eli vuotuinen korko on p.

      Joka kuukauden alussa talletetaan summa s viiden vuoden aikana eli 60 kertaa ja tilillä on
      summa S kuudennen vuoden 1. päivänä .

      S = s ( ((1 p)^(1/12)) ^60 ((1 p)^(1/12))^59 ... (1 p)^(1/12)) =

      s(1 p)^(1/12)* ( 1 (1 p)^(1/12) (1 p)^(2/12) ... (1 p)^(59/12))=

      s(1 p)^(1/12) * ((1 p)^(60/12) - 1) / ( (1 p)^(1/12) - 1). Kun s = 150 ja p = 0,03 saadaan

      S = 150*1,03^(1/12) * (1,03^5 - 1)/(1,03^(1/12) - 1) = 9711.

      Tuossa siis laskettiin geometrisen progression summa missä kahden peräkkäisen termin suhde oli (1 p)^(1/12).

    • Jaa, tuo p.a. viittaisi nollaan euroon.

    • Vielä vähän lisätietoa. En edelleenkään ota kantaa siihen, miten eri pankit todellisuudessa laskevat näitä korkoja.

      Joskus kuukausikorkona käytetään lukua p/12 kun p on vuosikorko. Tämä on yllä esittämäni koron approksimaatio. Katsotaan Taylorin sarjaa

      1 p)^(1/12) = 1 p/12 1/2! * 1/12 * (1/12 - 1) p^2 ...

      Tämän sarjan termit ovat vuorotellen positiivisia ja negatiivisia joten kun sarja katkaistaan n:nen termin jälkeen niin sen jäännöstermi on itseisarvoltann pienempi kuin sarjan (n 1):s termi ja samanmerkkinen kuin tämä.

      Joten l (1 p)^(1/12) - (1 p/12) l < 1/2 * 11/144 * p^2.

      Kun p = 0,03 tuo yläraja on 0,000034375.

      Tarkka arvo l 1,03^(1/12) - (1 0,03/12) l = l 1,00246627 - 1,0025 l = 0,00003373.

      Tuo 1 p/12 on siis tarkan arvon (1 p)^(1/12) approksimaatio.

      Laskuesimerkin tapauksessa on

      S = 150*1,0025* (1,0025^60 - 1)/(1,0025-1) = 9721.

      Tallettaja voittaisi 10 euroa tuolla tuolla approksimaatiolla laskettaessa tarkkaan arvoon verrattuna.

      • Taylorin sarja : (1 p)^(1/12) = ...

        Iski taas tuo painovirhepaholainen.


    • paperossiloota-arvio

      Ensimmäinne talletus ehtii kasvaa korkoa 60 kk. Sille korkotekijäksi tulee (1 0.03)^(1/12)^60 =1.593. Viimeinen talletus ehtii kasvaa vain kuukauden. Sen korkotekijäksi tulee 1.03^(1/12)=1.0025. Korkotekijöiden keskiarvo on 1.081. Sillä kerrotaan talletetut rahat eli 60*150*1.082 = 9729 euroa on sitten nostettavissa.

      Melko lähellä tuota "tarkkaa arvoa" 9711 e. Näin, kun korot ovat "matalalla". Muhkeammilla koroilla epätarkkuus tietysti kasvaa.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ja taas ammuttu kokkolassa

      Kokkolaisilta pitäisi kerätä pois kaikki ampumaset, keittiöveitset ja kaikki mikä vähänkään paukku ja on terävä.
      Kokkola
      30
      3441
    2. Kukka ampu taas Kokkolassa?

      T. olisi hetkeä aiemmin lähtenyt johonkin. Naapuri kai tekijä J.K., ei paljasjalkainen Kokkolalainen, vaan n. 100km pääs
      Kokkola
      8
      1494
    3. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      113
      1453
    4. Milli-helenalla ongelmia

      Suomen virkavallan kanssa. Eipä ole ihme kun on etsintäkuullutettu jenkkilässäkin. Vähiin käy oleskelupaikat virottarell
      Kotimaiset julkkisjuorut
      224
      1235
    5. Kun näen sinut

      tulen iloiseksi. Tuskin uskallan katsoa sinua, herätät minussa niin paljon tunteita. En tunne sinua hyvin, mutta jotain
      Ikävä
      34
      873
    6. Purra saksii taas. Hän on mielipuuhassaan.

      Nyt hän leikkaa hyvinvointialueiltamme kymmeniä miljoonia. Sotea romutetaan tylysti. Terveydenhoitoamme kurjistetaan. ht
      Maailman menoa
      242
      873
    7. Yhdelle miehelle

      Mä kaipaan sua niin paljon. Miksi sä oot tommonen pösilö?
      Ikävä
      60
      859
    8. Ja taas kerran hallinto-oikeus että pieleen meni

      Hallinto-oikeus kumosi kunnanhallituksen päätöksen vuokratalojen pääomituksesta. https://sysmad10.oncloudos.com/cgi/DREQ
      Sysmä
      66
      844
    9. Helena Koivu on äiti

      Mitä hyötyä on Mikko Koivulla kohdella LASTENSA äitiä huonosti . Vie lapset tutuista ympyröistä pois . Lasten kodista.
      Kotimaiset julkkisjuorut
      124
      833
    10. Löydänköhän koskaan

      Sunlaista herkkää tunteellista joka jumaloi mua. Tuskin. Siksi harmittaa että asiat meni näin 🥲
      Ikävä
      97
      808
    Aihe