Tarvitsisin apua tässä lyhyen matikan tehtävässä ——>
Liisi tallettaa joka kuukauden alussa 150 euroa tilille, jonka korko on 3 % p.a. (Huomaa: p.a. eli per annum, vuodessa.) Kuinka paljon rahaa on nostettavissa viiden vuoden kuluttua?
LYHYT MATIKKA, APUA!!!!
6
360
Vastaukset
- Noinkohan
Voi olettaa että tallettaminen aloitetaan vuoden alussa. Korko lasketaan kai kunkin vuoden keskitalletuksille, ja ne ovat 900, 2700, 4500, 6300 ja 8100 euroa.
- Ohman4
Pankit laskenevat mikä mitenkin. Matemaattinen lasku on seuraava:
Jos vuotuinen korko = p ja kuukauden alussa talletetaan summa s niin kuukauden lopussa se on kasvanut määrään s(1 p)^(1/12. Toisen kuukauden lopussa tästä on tullut s(1 p)^(2/12) ja vuoden kuluttua se on s(1 p)^(12/12)= s(1 p) eli vuotuinen korko on p.
Joka kuukauden alussa talletetaan summa s viiden vuoden aikana eli 60 kertaa ja tilillä on
summa S kuudennen vuoden 1. päivänä .
S = s ( ((1 p)^(1/12)) ^60 ((1 p)^(1/12))^59 ... (1 p)^(1/12)) =
s(1 p)^(1/12)* ( 1 (1 p)^(1/12) (1 p)^(2/12) ... (1 p)^(59/12))=
s(1 p)^(1/12) * ((1 p)^(60/12) - 1) / ( (1 p)^(1/12) - 1). Kun s = 150 ja p = 0,03 saadaan
S = 150*1,03^(1/12) * (1,03^5 - 1)/(1,03^(1/12) - 1) = 9711.
Tuossa siis laskettiin geometrisen progression summa missä kahden peräkkäisen termin suhde oli (1 p)^(1/12). Jaa, tuo p.a. viittaisi nollaan euroon.
Vielä vähän lisätietoa. En edelleenkään ota kantaa siihen, miten eri pankit todellisuudessa laskevat näitä korkoja.
Joskus kuukausikorkona käytetään lukua p/12 kun p on vuosikorko. Tämä on yllä esittämäni koron approksimaatio. Katsotaan Taylorin sarjaa
1 p)^(1/12) = 1 p/12 1/2! * 1/12 * (1/12 - 1) p^2 ...
Tämän sarjan termit ovat vuorotellen positiivisia ja negatiivisia joten kun sarja katkaistaan n:nen termin jälkeen niin sen jäännöstermi on itseisarvoltann pienempi kuin sarjan (n 1):s termi ja samanmerkkinen kuin tämä.
Joten l (1 p)^(1/12) - (1 p/12) l < 1/2 * 11/144 * p^2.
Kun p = 0,03 tuo yläraja on 0,000034375.
Tarkka arvo l 1,03^(1/12) - (1 0,03/12) l = l 1,00246627 - 1,0025 l = 0,00003373.
Tuo 1 p/12 on siis tarkan arvon (1 p)^(1/12) approksimaatio.
Laskuesimerkin tapauksessa on
S = 150*1,0025* (1,0025^60 - 1)/(1,0025-1) = 9721.
Tallettaja voittaisi 10 euroa tuolla tuolla approksimaatiolla laskettaessa tarkkaan arvoon verrattuna.- paperossiloota-arvio
Ensimmäinne talletus ehtii kasvaa korkoa 60 kk. Sille korkotekijäksi tulee (1 0.03)^(1/12)^60 =1.593. Viimeinen talletus ehtii kasvaa vain kuukauden. Sen korkotekijäksi tulee 1.03^(1/12)=1.0025. Korkotekijöiden keskiarvo on 1.081. Sillä kerrotaan talletetut rahat eli 60*150*1.082 = 9729 euroa on sitten nostettavissa.
Melko lähellä tuota "tarkkaa arvoa" 9711 e. Näin, kun korot ovat "matalalla". Muhkeammilla koroilla epätarkkuus tietysti kasvaa.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Orpo hiiri kadoksissa, Marin jo kommentoi
Kuinka on valtiojohto hukassa, kun vihollinen Grönlantia valloittaa? Putinisti Purra myös hiljaa kuin kusi sukassa.1166310Lopeta jo pelleily, tiedän kyllä mitä yrität mies
Et tule siinä onnistumaan. Tiedät kyllä, että tämä on just sulle. Sä et tule multa samaan minkäänlaista responssia, kosk3776113Nuori lapualainen nainen tapettu Tampereella?
Työmatkalainen havahtui erikoiseen näkyyn hotellin käytävällä Tampereella – tämä kaikki epäillystä hotellisurmasta tie695810Tampereen "empatiatalu" - "Harvoin näkee mitään näin kajahtanutta"
sanoo kokoomuslainen. Tampereen kaupunginvaltuuston maanantain kokouksessa käsiteltävä Tampereen uusi hyvinvointisuunni3443952Lidl teki sen mistä puhuin jo vuosikymmen sitten
Eli asiakkaat saavat nyt "skannata" ostoksensa keräilyvaiheessa omalla älypuhelimellaan, jolloin ei tarvitse mitään eril1452345Ukraina, unohtui korona - Grönlanti, unohtu Ukraina
Vinot silmät, unohtui Suomen valtiontalouden turmeleminen.42335Orpo pihalla kuin lumiukko
Onneksi pääministerimme ei ole ulkopolitiikassa päättäjiemme kärki. Hänellä on täysin lapsellisia luuloja Trumpin ja USA1151390- 121211
- 1821052
- 59867